高中數學等差數列說課稿
高中數學等差數列說課稿1
尊敬的各位考官:
大家好,我是xx號考生,今天我說課的題目是《等差數列的前n項和》。
新課標指出:高中教育屬于基礎教育,具有基礎性,且具有多樣性與選擇性,使不同的學生在數學上得到不同的發展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。
一、說教材
本節課選自人教A版高中數學必修5第二章。本節課是等差數列概念和特點等知識的延續和深化,也是后面學習等比數列及其前n項和的基礎。本節課既加深了對數列相關概念的'理解,又蘊含了倒序相加法、特殊到一般的數學思想方法。在整個高中教學中起到承上啟下的重要作用。
二、說學情
接下來談談學生的實際情況。本階段的學生已經具備了一定的抽象邏輯思維能力,能在教師的引導下獨立地解決問題。因此在教學過程中要給學生留置充分的思考時間和空間。此外要注重在學生的已有認知基礎上建構知識。
三、說教學目標
根據以上分析,我制定了如下教學目標:
(一)知識與技能
掌握等差數列前n項和公式,理解其推導方法,能用公式解決簡單問題。
(二)過程與方法
經歷觀察、思考、計算等探究過程,滲透從特殊到一般的數學思想方法。
(三)情感、態度與價值觀
在學習活動中獲得積極的、成功的情感體驗,激發學習興趣。
四、說教學重難點
在教學目標的實現過程中,教學重點是等差數列前n項和公式,教學難點是公式的推導過程。
五、說教法和學法
現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調學生的主動性、積極性為出發點。根據這一教學理念,結合本節課的內容特點和學生的年齡特征,我將采用講授法、練習法、自主探究、小組討論等教學方法。
六、說教學過程
下面重點談談我對教學過程的設計。
(一)導入新課
導入環節我會設置情境。200多年前,高斯的算術老師提出了下面的問題:1+2+3+…+100=?據說,當時其他同學忙于把100個數逐項相加時,10歲的高斯卻用非常巧妙的方法迅速得出了答案。
然后簡單分析1+2+3+…+100是求一個等差數列前100項的和。利用這一本質引出本節課學習等差數列的前n項和。
將著名數學家融入課堂,既能激發學生的學習興趣,也注重了數學課堂的文化的學習和培養。此外利用數學家進行導入,滲透數學的發展史。
(二)探索新知
新授環節主要探究等差數列前n項和的計算公式,是本課的中心環節。
我會直接提問:你知道高斯是如何計算的嗎?相信大多數學生聽過這個故事,想到(1+100)+(2+99)+…+(50+51)=101×50=5050。
有了本道題目的鋪墊,我會繼續提問:1,2,3,…n,…這個數列的前n項和如何求呢?在這里組織同桌討論。并且提示學生思考:如何使得不管有奇數個還是偶數個都能恰好配對不剩余?
高中數學等差數列說課稿2
教學目標
A、知識目標:
掌握等差數列前n項和公式的推導方法;掌握公式的運用。
B、能力目標:
(1)通過公式的探索、發現,在知識發生、發展以及形成過程中培養學生觀察、聯想、歸納、分析、綜合和邏輯推理的能力。
(2)利用以退求進的思維策略,遵循從特殊到一般的認知規律,讓學生在實踐中通過觀察、嘗試、分析、類比的方法導出等差數列的求和公式,培養學生類比思維能力。
(3)通過對公式從不同角度、不同側面的剖析,培養學生思維的靈活性,提高學生分析問題和解決問題的能力。
C、情感目標:(數學文化價值)
(1)公式的發現反映了普遍性寓于特殊性之中,從而使學生受到辯證唯物主義思想的熏陶。
(2)通過公式的運用,樹立學生“大眾教學”的思想意識。
(3)通過生動具體的現實問題,令人著迷的數學史,激發學生探究的興趣和欲望,樹立學生求真的勇氣和自信心,增強學生學好數學的心理體驗,產生熱愛數學的情感。
教學重點:等差數列前n項和的公式。
教學難點:等差數列前n項和的公式的靈活運用。
教學方法:啟發、討論、引導式。
教具:現代教育多媒體技術。
教學過程
一、創設情景,導入新課。
師:上幾節,我們已經掌握了等差數列的概念、通項公式及其有關性質,今天要進一步研究等差數列的前n項和公式。提起數列求和,我們自然會想到德國偉大的數學家高斯“神速求和”的故事,小高斯上小學四年級時,一次教師布置了一道數學習題:“把從1到100的自然數加起來,和是多少?”年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀察學生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。
例1,計算:1+2+3+4+5+6+7+8+9+10.
這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學生自行發言解答。
生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。
生2:可設S=1+2+3+4+5+6+7+8+9+10,根據加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。
上面兩式相加得2S=11+10+......+11=10×11=110
10個
所以我們得到S=55,即1+2+3+4+5+6+7+8+9+10=55
師:高斯神速計算出1到100所有自然數的各的方法,和上述兩位同學的方法相類似。
理由是:1+100=2+99=3+98=......=50+51=101,有50個101,所以1+2+3+......+100=50×101=5050。請同學們想一下,上面的方法用到等差數列的哪一個性質呢?
生3:數列{an}是等差數列,若m+n=p+q,則am+an=ap+aq.
二、教授新課(嘗試推導)
師:如果已知等差數列的首項a1,項數為n,第n項an,根據等差數列的性質,如何來導出它的前n項和Sn計算公式呢?根據上面的例子同學們自己完成推導,并請一位學生板演。
生4:Sn=a1+a2+......an-1+an也可寫成
Sn=an+an-1+......a2+a1
兩式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)
n個
=n(a1+an)
所以Sn=
#FormatImgID_0#
(I)
師:好!如果已知等差數列的首項為a1,公差為d,項數為n,則an=a1+(n-1)d代入公式(1)得
Sn=na1+
#FormatImgID_1#
d(II) 上面(I)、(II)兩個式子稱為等差數列的前n項和公式。公式(I)是基本的,我們可以發現,它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數列的首項a1,下底是第n項an,高是項數n。引導學生總結:這些公式中出現了幾個量?(a1,d,n,an,Sn),它們由哪幾個關系聯系?[an=a1+(n-1)d,Sn=
#FormatImgID_2#
=na1+
#FormatImgID_3#
d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應用。
三、公式的應用(通過實例演練,形成技能)。
1、直接代公式(讓學生迅速熟悉公式,即用基本量觀點認識公式)例2、計算:
(1)1+2+3+......+n
(2)1+3+5+......+(2n-1)
(3)2+4+6+......+2n
(4)1-2+3-4+5-6+......+(2n-1)-2n
請同學們先完成(1)-(3),并請一位同學回答。
生5:直接利用等差數列求和公式(I),得
(1)1+2+3+......+n=
#FormatImgID_4#
(2)1+3+5+......+(2n-1)=
#FormatImgID_5#
(3)2+4+6+......+2n=
#FormatImgID_6#
=n(n+1)
師:第(4)小題數列共有幾項?是否為等差數列?能否直接運用Sn公式求解?若不能,那應如何解答?小組討論后,讓學生發言解答。
生6:(4)中的數列共有2n項,不是等差數列,但把正項和負項分開,可看成兩個等差數列,所以
原式=[1+3+5+......+(2n-1)]-(2+4+6+......+2n)
=n2-n(n+1)=-n
生7:上題雖然不是等差數列,但有一個規律,兩項結合都為-1,故可得另一解法:
原式=-1-1-......-1=-n
n個
師:很好!在解題時我們應仔細觀察,尋找規律,往往會尋找到好的方法。注意在運用Sn公式時,要看清等差數列的項數,否則會引起錯解。
例3、(1)數列{an}是公差d=-2的等差數列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。
生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4
又∵d=-2,∴a1=6
∴S12=12 a1+66×(-2)=-60
生9:(2)由a1+a2+a3=12,a1+d=4
a8+a9+a10=75,a1+8d=25
解得a1=1,d=3 ∴S10=10a1+
#FormatImgID_7#
=145
師:通過上面例題我們掌握了等差數列前n項和的公式。在Sn公式有5個變量。已知三個變量,可利用構造方程或方程組求另外兩個變量(知三求二),請同學們根據例3自己編題,作為本節的.課外練習題,以便下節課交流。
師:(繼續引導學生,將第(2)小題改編)
①數列{an}等差數列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n
②若此題不求a1,d而只求S10時,是否一定非來求得a1,d不可呢?引導學生運用等差數列性質,用整體思想考慮求a1+a10的值。
2、用整體觀點認識Sn公式。
例4,在等差數列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發學生解)
師:來看第(1)小題,寫出的計算公式S16=
#FormatImgID_8#
=8(a1+a6)與已知相比較,你發現了什么?
生10:根據等差數列的性質,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。
師:對!(簡單小結)這個題目根據已知等式是不能直接求出a1,a16和d的,但由等差數列的性質可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數學問題的體現。
師:由于時間關系,我們對等差數列前n項和公式Sn的運用一一剖析,引導學生觀察當d≠0時,Sn是n的二次函數,那么從二次(或一次)的函數的觀點如何來認識Sn公式后,這留給同學們課外繼續思考。
最后請大家課外思考Sn公式(1)的逆命題:
已知數列{an}的前n項和為Sn,若對于所有自然數n,都有Sn=
#FormatImgID_9#
。數列{an}是否為等差數列,并說明理由。
四、小結與作業。
師:接下來請同學們一起來小結本節課所講的內容。
生11:1、用倒序相加法推導等差數列前n項和公式。
2、用所推導的兩個公式解決有關例題,熟悉對Sn公式的運用。
生12:1、運用Sn公式要注意此等差數列的項數n的值。
2、具體用Sn公式時,要根據已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。
3、當已知條件不足以求此項a1和公差d時,要認真觀察,靈活應用等差數列的有關性質,看能否用整體思想的方法求a1+an的值。
師:通過以上幾例,說明在解題中靈活應用所學性質,要糾正那種不明理由盲目套用公式的學習方法。同時希望大家在學習中做一個有心人,去發現更多的性質,主動積極地去學習。
本節所滲透的數學方法;觀察、嘗試、分析、歸納、類比、特定系數等。
數學思想:類比思想、整體思想、方程思想、函數思想等。
高中數學等差數列說課稿3
各位領導、各位專家:
你們好!我說課的課題是《等差數列》。我將從以下五個方面來分析本課題:
一、教材分析
1、教材的地位和作用:
《等差數列》是北師大版新課標教材《數學》必修5第一章第二節的內容,是學生在學習了數列的有關概念和學習了給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列知識的進一步深入和拓展。同時等差數列也為今后學習等比數列提供了學習對比的依據。另一方面,等差數列作為一種特殊的函數與函數思想密不可分,有著廣泛的實際應用。
2、教學目標:
a、在知識上,要求學生理解并掌握等差數列的概念,了解等差數列通項公式的推導及思想,初步引入“數學建模”的思想方法并能簡單運用。
b、在能力上,注重培養學生觀察、分析、歸納、推理的能力;在領會了函數與數列關系的前提下,把研究函數的方法遷移到研究數列上來,培養學生的知識、方法遷移能力,提高學生分析和解決問題的能力。
c、在情感上,通過對等差數列的研究,讓學生體驗從特殊到一般,又到特殊的認識事物的規律,培養學生勇于創新的科學精神。
3、教學重、難點:
重點:
①等差數列的概念。
②等差數列通項公式的推導過程及應用。
難點:
①等差數列的通項公式的推導。
②用數學思想解決實際問題。
二、學情分析
對于高二的學生,知識經驗已經比較豐富,他們的智力發展已經到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力。
三、教法、學法分析
教法:本節課我采用啟發式、討論式以及講練結合的教學方法,通過提問題激發學生的求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析并解決問題。
學法:在引導學生分析問題時,留出學生思考的余地,讓學生去聯想、探索,鼓勵學生大膽質疑,圍繞等差數列這個中心各抒己見,把需要解決的問題弄清楚。
四、教學過程
我把本節課的教學過程分為六個環節:
(一)創設情境,提出問題
問題情境(通過多媒體給出現實生活中的四個特殊的數列)
1、我們經常這樣數數,從0開始,每隔5數一次,可以得到數列:0,5,10,15,20,①
2、,在澳大利亞悉尼舉行的奧運會上,女子舉重被正式列為比賽項目,該項目共設置了7個級別,其中較輕的4個級別體重組成數列(單位:Kg):48,53,58,63②
3、水庫的管理人員為了保證優質魚類有良好的生活環境,用定期放水清庫的辦法清理水庫中的雜魚。如果一個水庫的水位為18m,自然放水每天水位降低2.5,最低降至5那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位組成數列(單位:m):18,15、5,13,10、5,8,5、5③
4、按照我國現行儲蓄制度(單利),某人按活期存入10000元錢,5年內各年末的本利和(單位:元)組成了數列:10072,10144,10216,10288,10360④
教師活動:引導學生觀察以上數列,提出問題:
問題1、請說出這四個數列的后面一項是多少?
問題2、說出這四個數列有什么共同特點?
(二)新課探究
學生活動:對于問題1,學生容易給出答案。而問題2對學生來說較為抽象,不易回答準確。
教師活動:為引導學生得出等差數列的'概念,我對學生的`表述進行歸類,引導學生得出關鍵詞“從第2項起”、“每一項與前一項的差”、“同一個常數”告訴他們把滿足這些條件的數列叫做等差數列,之后由他們集體給出等差數列的概念以及其數學表達式。
同時為了配合概念的理解,用多媒體給出三個數列,由學生進行判斷:
判斷下面的數列是否為等差數列,是等差數列的找出公差
1、1,2,3,4,5,6,;(√,d = 1)
2、0、9,0、7,0、5,0、3,0、1;(√,d = —0、2)
3、0,0,0,0,0,0,、;(√,d = 0)
其中第一個數列公差>0,第二個數列公差
由此強調:公差可以是正數、負數,也可以是0
在理解等差數列概念的基礎上提出:
問題3、如果等差數列的首項是a1,公差是d,如何用首項和公差將an表示出來?
教師活動:為引導學生得出通項公式,我采用討論式的教學方法。讓學生自由分組討論,在學生討論時引導他們得出a10=a1+9d,a40=a1+39d,進而猜想an=a1+(n—1)d。
整個過程由學生完成,通過互相討論的方式既培養了學生的協作意識又化解了教學難點。
此時指出:這就是不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,進而提出:
問題4、怎么樣嚴謹的求出等差數列的通項公式?
利用等差數列概念啟發學生寫出n—1個等式。對照已歸納出的通項公式啟發學生想出將n—1個等式相加,最后證出通項公式。在這里通過該知識點引入迭加法這一數學思想,逐步達到“注重方法,凸現思想”的教學要求。
接著舉例說明:若一個等差數列{an}的首項是1,公差是2,得出這個數列的通項公式是:an=1+(n—1)×2,即an=2n—1、以此來鞏固等差數列通項公式運用,同時要求畫出該數列圖象,由此說明等差數列是關于正整數n的一次函數,其圖像是均勻排開的無窮多個孤立點。這一題用函數的思想來研究數列,使數列的性質顯現得更加清楚。
(三)應用舉例
這一環節是使學生通過例題和練習,增強對通項公式的理解及運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的a
1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另一部分量。
例1(1)求等差數列8,5,2,的第20項;第30項;第40項(2)—401是不是等差數列—5,—9,—13,的項?如果是,是第幾項?
在第一問中我添加了計算第30項和第40項以加強鞏固等差數列通項公式;第二問實際上是求正整數解的問題,而關鍵是求出數列的通項公式an
例2在等差數列{an}中,已知a5=10,a12 =31,求首項a1與公差d、在前面例1的基礎上將例2當作練習作為對通項公式的鞏固。
例3是一個實際建模問題
某出租車的計價標準為1、2元/km,起步價為10元,即最初的4km(不含4千米)計費10元。如果某人乘坐該市的出租車去往14km處的目的地,且一路暢通,等候時間為0,需要支付多少車費?
這道題我采用啟發式和討論式相結合的教學方法。啟發學生注意“出租車的計價標準為1、2元/km”使學生想到在每個整公里時出租車的車費構成等差數列,引導學生將該實際問題轉化為數學模型。
設置此題的目的:加強學生對“數學建模”思想的認識。
(四)反饋練習
1、小節后的練習中的第1題
目的:使學生熟悉通項公式,對學生進行基本技能訓練。
2、小節后的練習中的第2題
目的:對學生加強建模思想訓練。
3、課本P38例3(備用)
已知數列{an}的通項公式anpnq,其中p、q是常數,那么這個數列是否一定是等差數列?若是,首項與公差分別是什么?它與函數y=px+q兩者圖象間有什么關系?
目的:此題是對學生進行數列問題提高訓練,學習如何用定義解決數列問題同時強化了等差數列的概念;進而讓學生從數(結構特征)與形(圖象)上進一步認識到等差數列的通項公式與一次函數之間的關系
(五)歸納小結
(由學生總結這節課的收獲)
1、等差數列的概念及數學表達式
強調關鍵詞:從第二項開始它的每一項與前一項之差都等于同一常數
2、等差數列的通項公式an=a1+(n—1)d會知三求一
3、用“數學建模”思想方法解決實際問題
(六)布置作業
必做題:課本P40習題2、2 A組第1、3、4題
選做題:課本P40習題2、2 B組第1題
課后實踐:
將學生分成三個小組,要求他們分別找出現實生活中公差大于、小于、等于0的典型的等差數列的模型,在下節課派代表為我們講解所選的等差數列。
目的是讓學生主動參與具體的教學實踐,進一步鞏固知識,激發興趣。
五、結束
本節課我根據高二學生的心理特征及認知規律,通過一系列問題貫穿教學始終,符合新課標要求的“以教師為主導,學生為主體”的思想,并最終達到預期的教學效果。
我的說課完畢,謝謝!
高中數學等差數列說課稿4
一.教材分析
1.教材的地位與作用
本節課《等差數列》是《高中數學第一冊》第三章第二節第一課時的內容,是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入學習。數列是高中數學重要內容之一,是前一章《函數》內容的延伸,體現教材編排的連續性,它在實際生活中有廣泛的實際應用,起著承前啟后的作用,同時也是培養學生數學能力的良好題材。等差數列作為數列部分的主要內容,是學生探究特殊數列的開始,對后續內容的學習,無論在知識上,還是在方法上都具有積極的意義。
2.教學目標的確定及依據
(1)教學參考書和教學大綱明確指出:本節的重點是等差數列的概念及其通項公式的推導過程和應用。本節先在具體例子的基礎上引出等差數列的概念,接著用不完全歸納法歸納出等差數列的通項公式,最后根據這個公式去進行有關計算。可見本課內容的安排旨在培養學生的觀察分析、歸納猜想、應用能力。
(2)從學生知識層面看:學生對數列有了初步的接觸和認識,對方程、函數、數學公式的運用具有一定技能,函數、方程思想體會逐漸深刻。
(3)從學生素質層面看:我從高一年級新生開始注意培養學生自主合作探究的學習習慣,學生思維活躍中,課堂參與意識較濃,且高一年級學生具有一定理解、分析、推理的能力。鑒于上述分析原因,我制定了本節課的重點、難點和教學目標:
重點、難點
重點:等差數列的概念及通項公式。
難點:
(1)理解等差數列―等差‖的特點及通項公式的含義。
(2)從函數、方程的觀點看通項公式
教學目標
知識目標:理解等差數列的概念,了解等差數列的通項公式的推導過程及思想,掌握等差數列的通項公式,并能用公式解決一些簡單實際問題。
能力目標:
(1)培養學生觀察分析、猜想歸納、應用公式的能力;
(2)在領會函數與數列關系的前提下,滲透函數、方程的思想。
情感目標:通過對等差數列的研究,體會從特殊到一般,又到特殊的認識事物規律,培養學生主動探索,勇于發現的求知精神。
二.教法設計和學法指導
數學教學是數學活動的教學,是師生之間交往互動共同發展的過程,結合本節課特點,我采用指導自主學習方法,即學生主動觀察――分析概括――師生互動,形成概念――啟發引導,演繹結論――拓展開放,鞏固提高。在學法上,引導學生去聯想、探索,同時鼓勵學生大膽質疑,學會探究。
三、教學程序設計
(在教學過程中,遵循學生的認知規律,充分調動學生的積極性,盡可能讓學生經歷知識的形成和發展過程,激發他們的學習興趣,發揮他們的主觀能動性及其在教學過程中的主體地位。為更好地使不同層次學生形成對本節課知識的理解,結合本教材特點,我設計如下教學過程)
本節課的教學過程由
(一)創設情境引入課題
(二)新課探究,推導公式
(三)應用例解
(四)練習反饋強化目標
(五)歸納小結提煉精華
(六)課后作業運用鞏固,六個教學環節構成。
(一)創設情境引入課題
1、復習回顧:從函數觀點看,數列可看作是定義域為__________對應的一列函數值,從而數列的通項公式也就是相應函數的______。
2、利用粉筆如圖堆放,共放7層,自上而下分別有
4、5、6、7、8、9、10根粉筆。寫成數列:4,5,6,7,8,9,10
①
3、某電影院第一排座位號是:
48、46、44、42、40、38、36、34、32、30。寫成數列:48,46,44,42,40,38,36,34,32,30
②引導學生觀察:數列①、②有何規律?
引導學生得出―從第2項起,每一項與前一項的差都是同一個常數‖,我們把這樣的數列叫做等差數列、(板書課題)(教學設想:通過練習1復習上節內容,為本節課用函數思想研究數列問題作準備;練習2和3引出兩個具體的等差數列,創設問題情境,引起學生學習興趣,激發他們的求知欲,培養學生由特殊到一般的認知能力。使學生認識到生活離不開數學,同樣數學也是離不開生活的。學會在生活中挖掘數學問題,解決數學問題,使數學生活化,生活數學化。)
(二)、新課探究,推導公式等差數列的概念.
如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,這個常數叫做等差數列的公差,通常用字母d來表示。強調:①它是每一項與它的前一項的差(從第2項起)必須是同一個常數。②公差可以是正數、負數,也可以是0。所以上面的'①、②都是等差數列,他們的'公差分別為
1、—2。
[練習一]判斷下列各組數列中哪些是等差數列,哪些不是?如果是,寫出首項a1和公差d,如果不是,說明理由。
(1)1,3,5,7,……
(2)9,6,3,0,—3,……(3)—8,—6,—4,—2,0,……
(4)3,3,3,3,3,……(5)1,……
(6)15,12,10,8,6,……(教學設想:通過練習,加深對概念的理解)2.等差數列數學表達式:如果等差數列{an}首項是a1,公差是d,那么根據等差數列的定義可得:a2—a1 =d,a3—a2 =d,a4—a3 =d …… an+1a1 =d a3—a2=d a4 –a3 =d ……
an –an—1 =d將這(n—1)個等式左右兩邊分別相加,就可以得到an—a1 =(n—1)d即an = a1 +(n—1)d
(Ⅰ)當n=1時,(Ⅰ)也成立,所以對一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差數列{an}的通項公式。
(三).應用例解
例1(1)求等差數列8,5,2,…的第20項;
(2)—401是不是等差數列—5,—9,—13,…的項?如果是,是第幾項?
解:(1)由a1=8,d=5—8=—3,n=20得
∴ a20=8+(20—1)×(—3)=—49
(2)分析:要判斷—401是不是數列的項,關鍵是求出數列的通項公式an,判斷是否存在正整數n,使得an =—401成立。
解:由a1=—5,d=—9—(—5)=—4,得
∴ an=—5+(n—1)×(—4)=—4n—1令—4n—1=—401,解得n= 100即—401是這個數列的第100項
[說明]
(1)強調當數列{an}的項數n已知時,下標應是確切的數字;
(2)實際上是求一個方程的正整數解的問題。這類問題學生以前見得較少,可向學生著重點出本問題的實質:要判斷—401是不是數列的項,關鍵是求出數列的通項公式an,判斷是否存在正整數n,使得an =—401成立
例2在等差數列{an}中,已知a5=10,a12 =31,求首項a1與公差d。(指導學生看書上的解題過程)
[說明]等差數列通項公式中的a
1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另一部分量。
例3梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。
[說明]讓學生會用所學數學公式解決簡單的實際問題
(四).練習反饋強化目標
1.P113練習第1題和第2題(要求學生在規定時間內做完上述題目,教師提問)。目的:對學生進行基本技能訓練。
2、若數列{an}是等差數列,若bn= an +c,試證明:數列{bn }是等差數列、證明:設等差數列{an}的公差為d bn—bn—1 =(an+c)—(an—1+c)= an—an—1 = d(常數)∴{bn }是等差數列
目的:對學生進行數列問題提高訓練
(教學設想:練習1培養學生的計算速度和計算能力;練習2如何用定義證明數列問題)
(五).歸納小結提煉精華[老師作適當引導(問題:⑴本節課你們學了什么?⑵要注意什么?⑶在生活中能否運用?),讓學生反思、歸納、總結。這樣來培養學生的概括能力、表達能力。]通過本課時的學習,首先要理解和掌握等差數列的定義及數學表達式:an—an—1=d(n≥2);其次要會推導等差數列的通項公式an=a1+(n—1)d(n≥1)、本課時的重點是通項公式的靈活應用,知道an,a1,d,n中任意三個,應用方程的思想,可以求出另外一個。
(六).課后作業運用鞏固必做題:課本P114習題第1,2,6題
選做題:已知等差數列{an}的首項a1=—2,第10項是第一個大于1的項。求公差d的取值范圍。(教學設想:通過分層作業,提高同學們的求知欲和滿足不同層次的需求)
四、板書設計§等差數列
1、定義
2、數學表達式
3、等差數列的通項公式例1(略)
例2(略)例3(略)
本節課的重點是等差數列的定義及其通項公式與應用,因此把強調的問題放在較醒目的位置,突出了重點,同時還給學生留有作題的地方,整個板面看上去自然、清晰、美觀,還能充分表現出精講多練的教學方法。
高中數學等差數列說課稿5
1、教學目標
讓學生了解公差的概念,明確一個數列是等差數列的限定條件,能根據定義判斷一個數列是等差數列;正確認識使用等差數列的各種表示法,能靈活運用通項公式求等差數列的首項、公差、項數以及指定的項。
2、學情分析
學生在第一節課《數列》的基礎上已經初次接觸“等差數列”的形式了,對于什么數列是等差數列已經明確,本節課需要學生具體明確的掌握等差數列的概念,通項公式以及基本應用。
3、重點難點
等差數列的概念以及通項公式是重點;概念和通項公式的應用時難點。
4、教學過程
4.1第一學時教學活動
活動1【講授】等差數列
Ⅰ、問題情境
上兩節課我們學習了數列的定義及給出數列和表示的數列的幾種方法——列舉法、通項公式、遞推公式、圖象法。這些方法從不同的角度反映數列的特點。下面我們看這樣一些例子。
課本P41頁的4個例子:
①0,5,10,15,20,25,…
②48,53,58,63
③18,15.5,13,10.5,8,5.5
④10072,10144,10216,10288,10366
觀察:請仔細觀察一下,看看以上四個數列有什么共同特征?
共同特征:從第二項起,每一項與它前面一項的差等于同一個常數(即等差);(誤:每相鄰兩項的差相等——應指明作差的順序是后項減前項)
Ⅱ、認知新課
1、等差數列:一般地,如果一個數列從第二項起,每一項與它前一項的差等于同一個常數,這個數列就叫做等差數列,這個常數就叫做等差數列的公差(常用字母“d”表示)。
⑴公差d一定是由后項減前項所得,而不能用前項減后項來求;
⑵對于數列,若后一項減去前一項為d(與n無關的數或字母),n≥2,n∈N,則此數列是等差數列,d為公差。
思考:數列①、②、③、④的通項公式存在嗎?如果存在,分別是什么?
2、等差數列的通項公式:“兩個”
等差數列定義是由一數列相鄰兩項之間關系而得……
由此歸納等差數列的通項公式。
故:已知一數列為等差數列,則只要知其首項和公差d,便可求得其通項。
[范例探究]
例1 ⑴求等差數列8,5,2…的第20項
⑵ —401是不是等差數列—5,—9,—13…的項?如果是,是第幾項?
例2已知數列{}的通項公式,其中、是常數,那么這個數列是否一定是等差數列?若是,首項與公差分別是什么?
分析:由等差數列的定義,要判定是不是等差數列,只要看(n≥2)是不是一個與n無關的常數。
注:①若p=0,則{}是公差為0的等差數列,即為常數列q,q,q,…
②若p≠0,則{}是關于n的'一次式,從圖象上看,表示數列的各點均在一次函數y=px+q的圖象上,一次項的系數是公差,直線在y軸上的截距為q。
③數列{}為等差數列的充要條件是其通項等于pn+q(p、q是常數),稱其為第3通項公式。
④判斷數列是否是等差數列的方法是否滿足3個通項公式中的一個。
Ⅲ、課堂練習
課本P45練習1、2、3、4
[補充練習]
1、(1)求等差數列3,7,11,……的第4項與第10項。
(2)求等差數列10,8,6,……的第20項。
(3)100是不是等差數列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由。
(4)-20是不是等差數列0,-3,-7,……的項?如果是,是第幾項?如果不是,說明理由。
答案:
(1)分析:根據所給數列的前3項求得首項和公差,寫出該數列的通項公式,從而求出所求項。
評述:關鍵是求出通項公式。
(2)評述:要注意解題步驟的規范性與準確性。
(3)分析:要想判斷一數是否為某一數列的其中一項,則關鍵是要看是否存在一正整數n值,使得等于這一數。
(4)解略
Ⅳ、課時小結
通過本節學習,首先要理解與掌握等差數列的定義及數學表達式;其次,要會推導等差數列的通項公式;并掌握其基本應用。
高中數學等差數列說課稿6
尊敬的各位專家、評委:
上午好!
我叫鄭永鋒,來自安慶師范學院。今天我說課的課題是人教A版必修5第二章第三節《等差數列的前n項和》。
我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
地位和作用
數列是刻畫離散現象的函數,是一種重要的屬性模型。人們往往通過離散現象認識連續現象,因此就有必要研究數列。
高中數列研究的主要對象是等差、等比兩個基本數列。本節課的教學內容是等差數列前n項和公式的推導及其簡單應用。
在推導等差數列前n項和公式的過程中,采用了:
1從特殊到一般的研究方法;
2倒敘相加求和。不僅得出來等差數列前n項和公式,而且對以后推導等比數列前n項和公式有一定的啟發,也是一種常用的數學思想方法。
等差數列的前n項和是學習極限、微積分的基礎,與數學課程的其他內容(函數、三角、不等式等)有著密切的聯系。
二、目標分析
(一)、教學目標
1、知識與技能
掌握等差數列的前n項和公式,能較熟練應用等差數列的前n項和公式求和。
2、過程與方法
經歷公式的推導過程,體會數形結合的數學思想,體驗從特殊到一般的研究方法,學會觀察、歸納、反思。
3、情感、態度與價值觀
獲得發現的成就感,逐步養成科學嚴謹的學習態度,提高代數推理的能力。
(二)、教學重點、難點
1、重點:等差數列的前n項和公式。
2、難點:獲得等差數列的前n項和公式推導的思路。
三、教法學法分析
(一)、教法
教學過程分為問題呈現階段、探索與發現階段、應用知識階段。
探索與發現公式推導的思路是教學的重點。如果直接介紹“倒敘相加”求和,無疑就像波利亞所說的'“帽子里跳出來的兔子”。所以在教學中采用以問題驅動、層層鋪墊,從特殊到一般啟發學生獲得公式的推導方法。
應用公式也是教學的重點。為了讓學生較熟練掌握公式,可采用設計變式題的教學手段,通過“選擇公式”,“變用公式”,“知三求二”三個層次來促進學生新的認知結構的形成。
(二)、學法
建構主義學習理論認為,學習是學生積極主動地建構知識的過程,學習應該與學生熟悉的背景相聯系。在教學中,讓學生在問題情境中,經歷知識的形成和發展,通過觀察、操作、歸納、探索、交流、反思參與學習,認識和理解數學知識,學會學習,發展能力。
四、教學過程分析
(一)、教學過程設計
1、問題呈現階段
泰姬陵坐落于印度古都阿格,是世界七大奇跡之一。傳說陵寢中有一個三角形圖案,以相同大小的圓寶石鑲飾而成共有100層。你知道這個圖案一共花了多少寶石嗎?
設計意圖:
(1)、源于歷史,富有人文氣息。
(2)、承上啟下,探討高斯算法。
2、探究發現階段
(1)、學生敘述高斯首尾配對的方法(學生對高斯的算法是熟悉的,知道采用首尾配對的方法來求和,但是他們對這種方法的認識可能處于模仿、記憶的階段。)
(2)、為了促進學生對這種算法的進一步理解,設計了下面的問題。
問題1:圖案中,第1層到第21層共有多少顆寶石?(這是奇數個項和的問題,不能簡單模仿偶數個項求和的方法,需要把中間項11看成是首、尾兩項1和21的等差中項。
通過前后比較得出認識:高斯“首尾配對”的算法還得分奇數、偶數個項的情況求和。
(3)、進而提出有無簡單的方法。
借助幾何圖形的直觀性,引導學生使用熟悉的幾何方法:把“全等三角形”倒置,與原圖補成平行四邊形。
獲得算法:S21=
設計意圖:
幾何直觀能啟迪思路,幫助理解,因此,借助幾何直觀學習和理解數學,是數學學習中的重要方面,只有做到了直觀上的理解,才是真正的理解。因此在教學中,要鼓勵學生借助幾何直觀進行思考,揭示研究對象的性質和關系,從而滲透了數形結合的數學思想。
問題2:求1到n的正整數之和。即Sn=1+2+3+…+n
∵Sn=n+(n—1)+(n—2)+…+1
∴2Sn=(n+1)+(n+1)+…。+(n+1)
Sn=(從求確定的前n個正整數之和到求一般項數的前n個正整數之和,旨在讓學生體驗“倒敘相加求和”這一算法的合理性,從心理上完成對“首尾配對求和”算法的改進)
由于前面的鋪墊,學生容易得出如下過程:
∵Sn=an+an—1+an—2+…a1,∴Sn=。
圖形直觀
等差數列的性質(如果m+n=p+q,那么am+an=ap+aq。)
設計意圖:
一言以蔽之,數學教學應努力做到:以簡馭繁,平實近人,退樸歸真,循循善誘,引人入勝。
3、公式應用階段
(1)、選用公式
公式1Sn=;
公式2Sn=na1+。
(2)、變用公式
(3)、知三求二
例1
某長跑運動員7天里每天的訓練量如下7500m,8000m,8500m,9000m,9500m,10000m,10500m。這位長跑運動員7天共跑了多少米?(本例提供了許多數據信息,學生可以從首項、尾項、項數出發,使用公式1,也可以從首項、公差、項數出發,使用公式2求和。達到學生熟悉公式的要素與結構的教學目的。
通過兩種方法的`比較,引導學生應該根據信息選擇適當的公式,以便于計算。)
例2
等差數列—10,—6,—2,2,…的前多少項和為54?(本例已知首項,前n項和、并且可以求出公差,利用公式2求項數。
事實上,在兩個求和公式中包含四個元素,從方程的角度,知三必能求余一。)
變式練習:在等差數列{an}中,a1=20,an=54,Sn=999,求n。
知三求二:
例3
在等差數列{an}中,已知d=20,n=37,Sn=629,求a1及an。(本例是使用等差數列的求和公式和通項公式求未知元。
事實上,在求和公式、通項公式中共有首項、公差、項數、尾項、前n項和五個元素,如果已知其中三個,連列方程組,就可以求出其余兩個。)
4、當堂訓練,鞏固深化。
通過學生的主體性參與,使學生深刻體會到本節課的主要內容和思想方法,從而實現對知識的再次深化。
采用課后習題1,2,3。
5、小結歸納,回顧反思。
小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。
(1)、課堂小結
①、回顧從特殊到一般的研究方法;
②、體會等差數列的基本元素的表示方法,倒敘相加的算法,以及數形結合的數學思想。
③、掌握等差數列的兩個球和公式及簡單應用
(2)、反思
我設計了三個問題
①、通過本節課的學習,你學到了哪些知識?
②、通過本節課的學習,你最大的體驗是什么?
③、通過本節課的學習,你掌握了哪些技能?
(二)、作業設計
作業分為必做題和選做題,必做題是對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生的自主發展、合作探究的學習氛圍的形成。
我設計了以下作業:
1、必做題:課本p118,練習1,2,3;
習題3.3第2題(3,4)。
2、選做題:
在等差數列中,(1)、已知a2+a5+a12+a15=36,求是S16。
(2)、已知a6=20,求s11。
(三)、板書設計
板書要基本體現課堂的內容和方法,體現課堂進程,能簡明扼要反映知識結構及其相互關系:能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。
五、評價分析
學生學習的結果評價固然重要,但是更重要的是學生學習的過程評價。我采用了及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對本節是否有一個完整的集訓,并進行及時的調整和補充。
以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。
謝謝!
高中數學等差數列說課稿7
一、教材分析
1、教材的地位和作用:
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
2、教學目標
根據教學大綱的要求和學生的實際水平,確定了本次課的教學目標
在知識方面:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想;初步引入“數學建模”的思想方法并能運用。
在能力方面:培養學生觀察、分析、歸納、推理的能力;在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。
在情感方面:通過對等差數列的研究,培養學生主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。
3、教學重點和難點
根據教學大綱的要求我確定本節課的教學重點為: ①等差數列的概念。
②等差數列的通項公式的推導過程及應用。
由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數列的同項公式是這節課的一個難點。同時,學生對“數學建模”的思想方法較為陌生,因此用數學思想解決實際問題是本節課的另一個難點。
二、學情教法分析:
對于高一學生,知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展。 針對高中生這一思維特點和心理特征,本節課我采用啟發式、討論式以及講練結合的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題。
三、學法指導:
在引導分析時,留出學生的思考空間,讓學生去聯想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學過程
本節課的教學過程由(一)復習引入(二)新課探究(三)應用舉例(四)反饋練習(五)歸納小結(六)布置作業,六個教學環節構成。
(一)復習引入:
1.從函數觀點看,數列可看作是定義域為__對應的一列函數值,從而數列的通項公式也就是相應函數的解析式)
通過練習1復習上節內容,為本節課用函數思想研究數列問題作準備。
2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內他的單詞量逐日依次遞減為:100,98,96,94,92 ①
3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內他的單詞量逐日依次遞增為5,10,15,20,25 ②
通過練習2和3引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創設問題情境,激發學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養學生由具體到抽象、由特殊到一般的'認知能力。
(二) 新課探究
1、由引入自然的給出等差數列的概念:
如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,這個常數叫做等差數列的公差,通常用字母d來表示。強調:
① “從第二項起”滿足條件;
②公差d一定是由后項減前項所得;
③每一項與它的前一項的差必須是同一個常數(強調“同一個常數” );
在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:
an+1-an=d (n≥1)同時為了配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。 1. 9 ,8,7,6,5,4,……;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01 3. 0,0,0,0,0,0,…….; √ d=0 4. 1,2,3,2,3,4,……;× 5. 1,0,1,0,1,……×
其中第一個數列公差0,第三個數列公差=0
由此強調:公差可以是正數、負數,也可以是0 2、第二個重點部分為等差數列的通項公式
在歸納等差數列通項公式中,我采用討論式的教學方法。給出等差數列的首項,公差d,由學生研究分組討論a4的通項公式。通過總結a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養了學生的協作意識又化解了教學難點。 若一等差數列{an }的首項是a1,公差是d,則據其定義可得: a2 - a1 =d 即: a2 =a1 +d
a3 a2 =d 即: a3 =a2 +d = a1 +2d a4 a3 =d 即: a4 =a3 +d = a1 +3d ……
猜想: a40 = a1 +39d,進而歸納出等差數列的通項公式: an=a1+(n-1)d
此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法------迭加法: a2 a1 =d
高中數學說課稿 數列
吉云
本節課講述的是等差數列(第一課時)的內容。
一、教材分析
1、教材的地位和作用:
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的性質與應用等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
2、教學目標
根據課程標準的要求和學生的實際水平,確定了本次課的教學目標
(1)在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想;初步引入―數學建模‖的思想方法并能運用。
(2)在能力上:培養學生觀察、分析、歸納、推理的能力;在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。
(3)在情感上:通過對等差數列的研究,培養學生主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。
3、教學重點和難點
根據課程標準的要求我確定本節課的教學重點為:
①等差數列的概念。
②等差數列的通項公式的推導過程及應用。
由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數列的同項公式是這節課的一個難點。同時,學生對―數學建模‖的思想方法較為陌生,因此用數學思想解決實際問題是本節課的另一個難點。
二、學情教法分析:
對于我校的高中學生,知識經驗比較貧乏,雖然他們的智力發展已到了形式運演階段,但并不具備教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發、研究和探討
以符合這類學生的心理發展特點,從而促進思維能力的進一步發展。本節課我采用啟發式、討論式以及講練結合的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題。
三、學法指導:
在引導分析時,留出學生的思考空間,讓學生去聯想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學程序
本節課的教學過程由
(一)復習引入
(二)新課探究
(三)應用舉例
(四)反饋練習
(五)歸納小結
(六)布置作業,六個教學環節構成。
(一)復習引入:
1.從函數觀點看,數列可看作是定義域為__________對應的一列函數值,從而數列的通項公式也就是相應函數的______。(N﹡;解析式)
通過練習1復習上節內容,為本節課用函數思想研究數列問題作準備。
2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內他的單詞量逐日依次遞減為:100,98,96,94,92①
3.小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內他的單詞量逐日依次遞增為5,10,15,20,25②
通過練習2和3引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創設問題情境,激發學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養學生由具體到抽象、由特殊到一般的認知能力。
(二)新課探究
1、由引入自然的給出等差數列的概念:
如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,這個常數叫做等差數列的公差,通常用字母d來表示。強調:
① ―從第二項起‖滿足條件;
②公差d一定是由后項減前項所得;
③每一項與它的前一項的差必須是同一個常數(強調―同一個常數‖);
在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式: an+1-an=d(n≥1)同時為了配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。
1.9,8,7,6,5,4,……;√ d=-1
2.0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3.0,0,0,0,0,0,…….;√ d=0
4.1,2,3,2,3,4,……;×
5.1,0,1,0,1,……×
其中第一個數列公差<0, 第二個數列公差>0,第三個數列公差=0
由此強調:公差可以是正數、負數,也可以是02、第二個重點部分為等差數列的通項公式
在歸納等差數列通項公式中,我采用討論式的教學方法。給出等差數列的首項,公差d,由學生研究分組討論a4的通項公式。通過總結a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養了學生的協作意識又化解了教學難點。
若一等差數列{an }的首項是a1,公差是d,則據其定義可得:
a2-a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d,進而歸納出等差數列的通項公式:
an=a1+(n-1)d
此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法------迭加法: a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
……
an – an-1=d
將這(n-1)個等式左右兩邊分別相加,就可以得到an– a1=(n-1)d即 an= a1+(n-1)d(1)當n=1時,(1)也成立,所以對一切n∈N﹡,上面的公式都成立
因此它就是等差數列{an}的通項公式。
在迭加法的證明過程中,我采用啟發式教學方法。
利用等差數列概念啟發學生寫出n-1個等式。
對照已歸納出的通項公式啟發學生想出將n-1個等式相加。證出通項公式。
在這里通過該知識點引入迭加法這一數學思想,逐步達到―注重方法,凸現思想‖ 的教學要求 接著舉例說明:若一個等差數列{an}的首項是1,公差是2,得出這個數列的通項公式是:an=1+(n-1)×2,即an=2n-1以此來鞏固等差數列通項公式運用
同時要求畫出該數列圖象,由此說明等差數列是關于正整數n一次函數,其圖像是均勻排開的無窮多個孤立點。用函數的思想來研究數列,使數列的性質顯現得更加清楚。
(三)應用舉例
這一環節是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的a1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另一部分量。
例1(1)求等差數列8,5,2,…的第20項;第30項;第40項
(2)-401是不是等差數列-5,-9,-13,…的項?如果是,是第幾項?
在第一問中我添加了計算第30項和第40項以加強鞏固等差數列通項公式;第二問實際上是求正整數解的問題,而關鍵是求出數列的通項公式an.例2 在等差數列{an}中,已知a5=10,a12 =31,求首項a1與公差d。
在前面例1的基礎上將例2當作練習作為對通項公式的鞏固
例3是一個實際建模問題
建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?
這道題我采用啟發式和討論式相結合的教學方法。啟發學生注意每級臺階―等高‖使學生想到每級臺階離地面的高度構成等差數列,引導學生將該實際問題轉化為數學模型------等差數列:(學生討論分析,分別演板,教師評析問題。問題可能出現在:項數學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。
設置此題的目的:1.加強同學們對應用題的綜合分析能力,2.通過數學實際問題引出等差數列問題,激發了學生的興趣;3.再者通過數學實例展示了―從實際問題出發經抽象概括建立數學模型,最后還原說明實際問題的―數學建模‖的數學思想方法
(四)反饋練習
1、小節后的練習中的第1題和第2題(要求學生在規定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。
2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。
目的:對學生加強建模思想訓練。
3、若數例{an} 是等差數列,若 bn = k an,(k為常數)試證明:數列{bn}是等差數列
此題是對學生進行數列問題提高訓練,學習如何用定義證明數列問題同時強化了等差數列的概念。
(五)歸納小結(由學生總結這節課的收獲)
1.等差數列的概念及數學表達式.
強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數
2.等差數列的通項公式 an= a1+(n-1)d會知三求一
3.用―數學建模‖思想方法解決實際問題
(六)布置作業
必做題:課本P114習題3.2第2,6 題
選做題:已知等差數列{an}的首項a1=-24,從第10項開始為正數,求公差d的取值范圍。(目的:通過分層作業,提高同學們的求知欲和滿足不同層次的學生需求)
五、板書設計
在板書中突出本節重點,將強調的地方如定義中,―從第二項起‖及―同一常數‖等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現了精講多練的教學方法。