久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

余弦定理教學(xué)案例分析

時(shí)間:2019-05-12 20:10:02下載本文作者:會(huì)員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《余弦定理教學(xué)案例分析》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《余弦定理教學(xué)案例分析》。

第一篇:余弦定理教學(xué)案例分析

高中數(shù)學(xué)教學(xué)中的“情境.問題.反思.應(yīng)用”----“余弦定理”教學(xué)案例分析

作者:王兵 發(fā)布日期:2007-11-

1[摘要]:辯證唯物主義認(rèn)識(shí)論、現(xiàn)代數(shù)學(xué)觀和建構(gòu)主義教學(xué)觀與學(xué)習(xí)觀指導(dǎo)下的“情境.問題.反思.應(yīng)用”教學(xué)實(shí)驗(yàn),旨在培養(yǎng)學(xué)生的數(shù)學(xué)問題意識(shí),養(yǎng)成從數(shù)學(xué)的角度發(fā)現(xiàn)和提出問題、形成獨(dú)立思考的習(xí)慣,提高學(xué)生解決數(shù)學(xué)問題的能力,增強(qiáng)學(xué)生的創(chuàng)新意識(shí)和實(shí)踐能力。創(chuàng)設(shè)數(shù)學(xué)情境是前提,提出問題是重點(diǎn),解決問題是核心,應(yīng)用數(shù)學(xué)知識(shí)是目的,因此所設(shè)情境要符合學(xué)生的“最近發(fā)展區(qū)”。“余弦定理”具有一定廣泛的應(yīng)用價(jià)值,教學(xué)中我們從實(shí)際需要出發(fā)創(chuàng)設(shè)情境。

[關(guān)鍵詞]:余弦定理;解三角形;數(shù)學(xué)情境

一、教學(xué)設(shè)計(jì)

1、教學(xué)背景

在近幾年教學(xué)實(shí)踐中我們發(fā)現(xiàn)這樣的怪現(xiàn)象:絕大多數(shù)學(xué)生認(rèn)為數(shù)學(xué)很重要,但很難;學(xué)得很苦、太抽象、太枯燥,要不是升學(xué),我們才不會(huì)去理會(huì),況且將來用數(shù)學(xué)的機(jī)會(huì)很少;許多學(xué)生完全依賴于教師的講解,不會(huì)自學(xué),不敢提問題,也不知如何提問題。這說明了學(xué)生一是不會(huì)學(xué)數(shù)學(xué),二是對數(shù)學(xué)有恐懼感,沒有信心,這樣的心態(tài)怎能對數(shù)學(xué)有所創(chuàng)新呢?即使有所創(chuàng)新那與學(xué)生們所花代價(jià)也不成比例,其間扼殺了他們太多的快樂和個(gè)性特長。建構(gòu)主義提倡情境式教學(xué),認(rèn)為多數(shù)學(xué)習(xí)應(yīng)與具體情境有關(guān),只有在解決與現(xiàn)實(shí)世界相關(guān)聯(lián)的問題中,所建構(gòu)的知識(shí)才將更豐富、更有效和易于遷移。我們在 2003級(jí)進(jìn)行了“創(chuàng)設(shè)數(shù)學(xué)情境與提出數(shù)學(xué)問題”教學(xué)實(shí)驗(yàn),通過一段時(shí)間的教學(xué)實(shí)驗(yàn),多數(shù)同學(xué)已能適應(yīng)這種學(xué)習(xí)方式,平時(shí)能主動(dòng)思考,敢于提出自己關(guān)心的問題和想法,從過去被動(dòng)的接受知識(shí)逐步過渡到主動(dòng)探究、索取知識(shí),增強(qiáng)了學(xué)習(xí)數(shù)學(xué)的興趣。

2、教材分析

“余弦定理”是全日制普通高級(jí)中學(xué)教科書(試驗(yàn)修訂本 ?必修)數(shù)學(xué)第一冊(下)的第五章第九節(jié)的主要內(nèi)容之一,是解決有關(guān)斜三角形問題的兩個(gè)重要定理之一,也是初中“勾股定理”內(nèi)容的直接延拓,它是三角函數(shù)一般知識(shí)和平面向量知識(shí)在三角形中的具體運(yùn)用,是解可轉(zhuǎn)化為三角形計(jì)算問題的其它數(shù)學(xué)問題及生產(chǎn)、生活實(shí)際問題的重要工具,因此具有廣泛的應(yīng)用價(jià)值。本節(jié)課是“正弦定理、余弦定理”教學(xué)的第二節(jié)課,其主要任務(wù)是引入并證明余弦定理,在課型上屬于“定理教學(xué)課”。布魯納指出,學(xué)生不是被動(dòng)的、消極的知識(shí)的接受者,而是主動(dòng)的、積極的知識(shí)的探究者。教師的作用是創(chuàng)設(shè)學(xué)生能夠獨(dú)立探究的情境,引導(dǎo)學(xué)生去思考,參與知識(shí)獲得的過程。因此,做好“余弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),而且能培養(yǎng)學(xué)生的應(yīng)用意識(shí)和實(shí)踐操作能力,以及提出問題、解決問題等研究性學(xué)習(xí)的能力。

3、設(shè)計(jì)思路

建構(gòu)主義強(qiáng)調(diào),學(xué)生并不是空著腦袋走進(jìn)教室的。在日常生活中,在以往的學(xué)習(xí)中,他們已經(jīng)形成了豐富的經(jīng)驗(yàn),小到身邊的衣食住行,大到宇宙、星體的運(yùn)行,從自然現(xiàn)象到社會(huì)生活,他們幾乎都有一些自己的看法。而且,有些問題即使他們還沒有接觸過,沒有現(xiàn)成的經(jīng)驗(yàn),但當(dāng)問題一旦呈現(xiàn)在面前時(shí),他們往往也可以基于相關(guān)的經(jīng)驗(yàn),依靠他們的認(rèn)知能力,形成對問題的某種解釋。而且,這種解釋并不都是胡亂猜測,而是從他們的經(jīng)驗(yàn)背景出發(fā)而推出的合乎邏輯的假設(shè)。所以,教學(xué)不能無視學(xué)生的這些經(jīng)驗(yàn),另起爐灶,從外部裝進(jìn)新知識(shí),而是要把學(xué)生現(xiàn)有的知識(shí)經(jīng)驗(yàn)作為新知識(shí)的生長點(diǎn),引導(dǎo)學(xué)生從原有的知識(shí)經(jīng)驗(yàn)中“生長”出新的知識(shí)經(jīng)驗(yàn)。

為此我們根據(jù)“情境--問題”教學(xué)模式,沿著“設(shè)置情境--提出問題--解決問題--反思應(yīng)用”這條主線,把從情境中探索和提出數(shù)學(xué)問題作為教學(xué)的出發(fā)點(diǎn),以“問題”為紅線組織教學(xué),形成以提出問題與解決問題相互引發(fā)攜手并進(jìn)的“情境--問題”學(xué)習(xí)鏈,使學(xué)生真正成為提出問題和解決問題的主體,成為知識(shí)的“發(fā)現(xiàn)者”和“創(chuàng)造者”,使教學(xué)過程成為學(xué)生主動(dòng)獲取知識(shí)、發(fā)展能力、體驗(yàn)數(shù)學(xué)的過程。根據(jù)上述精神,做出了如下設(shè)計(jì):①創(chuàng)設(shè)一個(gè)現(xiàn)實(shí)問題情境作為提出問題的背景;②啟發(fā)、引導(dǎo)學(xué)生提出自己關(guān)心的現(xiàn)實(shí)問題,逐步將現(xiàn)實(shí)問題轉(zhuǎn)化、抽象成過渡性數(shù)學(xué)問題,解決問題時(shí)需要使用余弦定理,借此引發(fā)學(xué)生的認(rèn)知沖突,揭示解斜三角形的必要性,并使學(xué)生產(chǎn)生進(jìn)一步探索解決問題的動(dòng)機(jī)。然后引導(dǎo)學(xué)生抓住問題的數(shù)學(xué)實(shí)質(zhì),引伸成一般的數(shù)學(xué)問題:已知三角形的兩條邊和他們的夾角,求第三邊。③為了解決提出的問題,引導(dǎo)學(xué)生從原有的知識(shí)經(jīng)驗(yàn)中“生長”出新的知識(shí)經(jīng)驗(yàn),通過作邊BC的垂線得到兩個(gè)直角三角形,然后利用勾股定理和銳角三角函數(shù)得出余弦定理的表達(dá)式,進(jìn)而引導(dǎo)學(xué)生進(jìn)行嚴(yán)格的邏輯證明。證明時(shí),關(guān)鍵在于啟發(fā)、引導(dǎo)學(xué)生明確以下兩點(diǎn):一是證明的起點(diǎn);二是如何將向量關(guān)系轉(zhuǎn)化成數(shù)量關(guān)系。④由學(xué)生獨(dú)立使用已證明的結(jié)論去解決中所提出的問題。

二、教學(xué)過程

1、設(shè)置情境

自動(dòng)卸貨汽車的車箱采用液壓機(jī)構(gòu)。設(shè)計(jì)時(shí)需要計(jì)算油泵頂桿 BC的長度(如下圖),已知車箱的最大仰角為60°,油泵頂點(diǎn)B與車箱支點(diǎn)A之間的距離為1.95m,AB與水平線之間的夾角為6°20′,AC的長為1.40m,計(jì)算BC的長(保留三個(gè)有效數(shù)字)。

2、提出問題

師:大家想一想,能否把這個(gè)實(shí)際問題抽象為數(shù)學(xué)問題?(數(shù)學(xué)建模)

能,在三角形 ABC,已知AB=1.95m,AC=1.40m,∠BAC=60°+6°20′=66°20′,求BC的長。

師:能用正弦定理求解嗎?為什么?

不能。正弦定理主要解決:已知三角形的兩邊與一邊的對角,求另一邊的對角;已知三角形的兩角與一邊,求角的對邊。師:這個(gè)問題的實(shí)質(zhì)是什么?

在三角形中,已知兩邊和它們的夾角,求第三邊。(一般化)三角形 ABC,知AC=b,BC=a,角C,求AB。

3、解決問題

師:請同學(xué)們想一想,我們以前遇到這種一般問題時(shí),是怎樣處理的? 先從特殊圖形入手,尋求答案或發(fā)現(xiàn)解法。(特殊化)可以先在直角三角形中試探一下。

直角三角形中 c 2 =a 2 +b 2(勾股定理角C為直角)斜三角形ABC中(如圖3),過A作BC邊上的高AD,將斜三角形轉(zhuǎn)化為直角三角形。(聯(lián)想構(gòu)造)師:垂足 D一定在邊BC上嗎?

不一定,當(dāng)角 C為鈍角時(shí),點(diǎn)D在BC的延長線上。(分類討論,培養(yǎng)學(xué)生從不同的角度研究問題)

在銳角三角形 ABC中,過A作AD垂直BC交BC于D,在直角三角形ADB中,AB 2 =AD 2 +BD 2,在直角三角形ADC中,AD=ACsinC, CD=ACcosC 即AD=bsinC, CD=bcosC 又 BD=BC-CD,即BD=a-bcosC

∴ c 2 =(bsinC)2 +(a-bcosC)2

=b 2 sin 2 C+a 2-2abcosC+b 2 cos 2 C =a 2 +b 2-2abcosC 同理 a 2 =b 2 +c 2-2bccosA b 2 =a 2 +c 2-2accosB

在鈍角三角形 ABC中,不妨設(shè)角C為鈍角,過A作AD垂直BC交BC的延長線于D,在直角三角形 ADB中,AB 2 =AD 2 +BD 2,在直角三角形ADC中,AD=ACsin(π-C),CD=ACcos(π-C),即AD=bsinC, CD=-bcos C,又BD=BC+CD,即BD=a-bcosC

∴ c 2 =(bsinC)2 +(a-bcosC)2

=b 2 sin 2 C+a 2-2abcosC+b 2 cos 2 C =a 2 +b 2-2abcosC

同理 a 2 =b 2 +c 2-2bccosA b 2 =a 2 +c 2-2accosB

同理可證 a 2 =b 2 +c 2-2bccosA b 2 =a 2 +c 2-2accosB

師:大家回想一下,在證明過程易出錯(cuò)的地方是什么?

4、反思應(yīng)用

師:同學(xué)們通過自己的努力,發(fā)現(xiàn)并證明了余弦定理。余弦定理揭示了三角形中任意兩邊與夾角的關(guān)系,請大家考慮一下,余弦定理能夠解決哪些問題?

知三求一,即已知三角形的兩邊和它們的夾角,可求另一邊;已知三角形的三條邊,求角。余弦定理三角形任何一邊的平方等于其他兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍。

師:請同學(xué)們用余弦定理解決本節(jié)課開始時(shí)的問題。(請一位同學(xué)將他的解題過程寫在黑板上)

解:由余弦定理,得

BC 2 =AB 2 +AC 2-2AB.ACcosA

= 1.952+1.402-2×1.95×1.40cos66°20′ = 3.571

∴ BC≈1.89(m)

答:頂桿 BC約長1.89m。

師:大家回想一想,三角形中有六個(gè)元素,三條邊及三個(gè)角,知道其中任意三個(gè)元素,是否能求出另外的三個(gè)元素?

不能,已知的三個(gè)元素中,至少要有一個(gè)邊。

師:解三角形時(shí),何時(shí)用正弦定理?何時(shí)用余弦定理?

已知三角形的兩邊與一邊的對角或兩角與一角的對邊,解三角形時(shí),利用正弦定理;已知三角形的兩邊和它們的夾角或三條邊,解三角形時(shí),利用余弦定理。鞏固練習(xí):課本第 131頁練習(xí)1⑵、2⑵、3⑵、4⑵

三、教學(xué)反思

本課中,教師立足于所創(chuàng)設(shè)的情境,通過學(xué)生自主探索、合作交流,親身經(jīng)歷了提出問題、解決問題、應(yīng)用反思的過程,學(xué)生成為余弦定理的“發(fā)現(xiàn)者”和“創(chuàng)造者”,切身感受了創(chuàng)造的苦和樂,知識(shí)目標(biāo)、能力目標(biāo)、情感目標(biāo)均得到了較好的落實(shí),為今后的“定理教學(xué)”提供了一些有用的借鑒。

創(chuàng)設(shè)數(shù)學(xué)情境是“情境.問題.反思.應(yīng)用”教學(xué)的基礎(chǔ)環(huán)節(jié),教師必須對學(xué)生的身心特點(diǎn)、知識(shí)水平、教學(xué)內(nèi)容、教學(xué)目標(biāo)等因素進(jìn)行綜合考慮,對可用的情境進(jìn)行比較,選擇具有較好的教育功能的情境。

從應(yīng)用需要出發(fā),創(chuàng)設(shè)認(rèn)知沖突型數(shù)學(xué)情境,是創(chuàng)設(shè)情境的常用方法之一。“余弦定理”具有廣泛的應(yīng)用價(jià)值,故本課中從應(yīng)用需要出發(fā)創(chuàng)設(shè)了教學(xué)中所使用的數(shù)學(xué)情境。該情境源于教材第五章 5.10解三角形應(yīng)用舉例的例1。實(shí)踐說明,這種將教材中的例題、習(xí)題作為素材改造加工成情境,是創(chuàng)設(shè)情境的一條有效途徑。只要教師能對教材進(jìn)行深入、細(xì)致、全面的研究,便不難發(fā)現(xiàn)教材中有不少可用的素材。

“情境.問題.反思.應(yīng)用”教學(xué)模式主張以問題為“紅線”組織教學(xué)活動(dòng),以學(xué)生作為提出問題的主體,如何引導(dǎo)學(xué)生提出問題是教學(xué)成敗的關(guān)鍵,教學(xué)實(shí)驗(yàn)表明,學(xué)生能否提出數(shù)學(xué)問題,不僅受其數(shù)學(xué)基礎(chǔ)、生活經(jīng)歷、學(xué)習(xí)方式等自身因素的影響,還受其所處的環(huán)境、教師對提問的態(tài)度等外在因素的制約。因此,教師不僅要注重創(chuàng)設(shè)適宜的數(shù)學(xué)情境(不僅具有豐富的內(nèi)涵,而且還具有“問題”的誘導(dǎo)性、啟發(fā)性和探索性),而且要真正轉(zhuǎn)變對學(xué)生提問的態(tài)度,提高引導(dǎo)水平,一方面要鼓勵(lì)學(xué)生大膽地提出問題,另一方面要妥善處理學(xué)生提出的問題。關(guān)注學(xué)生學(xué)習(xí)的結(jié)果,更關(guān)注學(xué)生學(xué)習(xí)的過程;關(guān)注學(xué)生數(shù)學(xué)學(xué)習(xí)的水平,更關(guān)注學(xué)生在數(shù)學(xué)活動(dòng)中所表現(xiàn)出來的情感與態(tài)度;關(guān)注是否給學(xué)生創(chuàng)設(shè)了一種情境,使學(xué)生親身經(jīng)歷了數(shù)學(xué)活動(dòng)過程.把“質(zhì)疑提問”,培養(yǎng)學(xué)生的數(shù)學(xué)問題意識(shí),提高學(xué)生提出數(shù)學(xué)問題的能力作為教與學(xué)活動(dòng)的起點(diǎn)與歸宿。

第二篇:余弦定理教學(xué)案例分析

高中數(shù)學(xué)教學(xué)中的“情境.問題.反思.應(yīng)用”----“余弦定理”教學(xué)案例分析

作者: 王兵 發(fā)布日期:2007-11-1

摘要]: 辯證唯物主義認(rèn)識(shí)論、現(xiàn)代數(shù)學(xué)觀和建構(gòu)主義教學(xué)觀與學(xué)習(xí)觀指導(dǎo)下的“情境.問題.反思.應(yīng)用”教學(xué)實(shí)驗(yàn),旨在培養(yǎng)學(xué)的數(shù)學(xué)問題意識(shí),養(yǎng)成從數(shù)學(xué)的角度發(fā)現(xiàn)和提出問題、形成獨(dú)立思考的習(xí)慣,提高學(xué)生解決數(shù)學(xué)問題的能力,增強(qiáng)學(xué)生的創(chuàng)新意和實(shí)踐能力。創(chuàng)設(shè)數(shù)學(xué)情境是前提,提出問題是重點(diǎn),解決問題是核心,應(yīng)用數(shù)學(xué)知識(shí)是目的,因此所設(shè)情境要符合學(xué)生的“最發(fā)展區(qū)”。“余弦定理”具有一定廣泛的應(yīng)用價(jià)值,教學(xué)中我們從實(shí)際需要出發(fā)創(chuàng)設(shè)情境。

關(guān)鍵詞]: 余弦定理;解三角形;數(shù)學(xué)情境、教學(xué)設(shè)計(jì)、教學(xué)背景

近幾年教學(xué)實(shí)踐中我們發(fā)現(xiàn)這樣的怪現(xiàn)象:絕大多數(shù)學(xué)生認(rèn)為數(shù)學(xué)很重要,但很難;學(xué)得很苦、太抽象、太枯燥,要不是升學(xué),們才不會(huì)去理會(huì),況且將來用數(shù)學(xué)的機(jī)會(huì)很少;許多學(xué)生完全依賴于教師的講解,不會(huì)自學(xué),不敢提問題,也不知如何提問題。說明了學(xué)生一是不會(huì)學(xué)數(shù)學(xué),二是對數(shù)學(xué)有恐懼感,沒有信心,這樣的心態(tài)怎能對數(shù)學(xué)有所創(chuàng)新呢?即使有所創(chuàng)新那與學(xué)生們所代價(jià)也不成比例,其間扼殺了他們太多的快樂和個(gè)性特長。建構(gòu)主義提倡情境式教學(xué),認(rèn)為多數(shù)學(xué)習(xí)應(yīng)與具體情境有關(guān),只有在決與現(xiàn)實(shí)世界相關(guān)聯(lián)的問題中,所建構(gòu)的知識(shí)才將更豐富、更有效和易于遷移。我們在 2003級(jí)進(jìn)行了“創(chuàng)設(shè)數(shù)學(xué)情境與提出數(shù)問題”教學(xué)實(shí)驗(yàn),通過一段時(shí)間的教學(xué)實(shí)驗(yàn),多數(shù)同學(xué)已能適應(yīng)這種學(xué)習(xí)方式,平時(shí)能主動(dòng)思考,敢于提出自己關(guān)心的問題和想,從過去被動(dòng)的接受知識(shí)逐步過渡到主動(dòng)探究、索取知識(shí),增強(qiáng)了學(xué)習(xí)數(shù)學(xué)的興趣。、教材分析

余弦定理”是全日制普通高級(jí)中學(xué)教科書(試驗(yàn)修訂本 ?必修)數(shù)學(xué)第一冊(下)的第五章第九節(jié)的主要內(nèi)容之一,是解決有關(guān)三角形問題的兩個(gè)重要定理之一,也是初中“勾股定理”內(nèi)容的直接延拓,它是三角函數(shù)一般知識(shí)和平面向量知識(shí)在三角形中的體運(yùn)用,是解可轉(zhuǎn)化為三角形計(jì)算問題的其它數(shù)學(xué)問題及生產(chǎn)、生活實(shí)際問題的重要工具,因此具有廣泛的應(yīng)用價(jià)值。本節(jié)課是正弦定理、余弦定理”教學(xué)的第二節(jié)課,其主要任務(wù)是引入并證明余弦定理,在課型上屬于“定理教學(xué)課”。布魯納指出,學(xué)生是被動(dòng)的、消極的知識(shí)的接受者,而是主動(dòng)的、積極的知識(shí)的探究者。教師的作用是創(chuàng)設(shè)學(xué)生能夠獨(dú)立探究的情境,引導(dǎo)學(xué)生去考,參與知識(shí)獲得的過程。因此,做好“余弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、展等辯證觀點(diǎn),而且能培養(yǎng)學(xué)生的應(yīng)用意識(shí)和實(shí)踐操作能力,以及提出問題、解決問題等研究性學(xué)習(xí)的能力。、設(shè)計(jì)思路

構(gòu)主義強(qiáng)調(diào),學(xué)生并不是空著腦袋走進(jìn)教室的。在日常生活中,在以往的學(xué)習(xí)中,他們已經(jīng)形成了豐富的經(jīng)驗(yàn),小到身邊的衣食行,大到宇宙、星體的運(yùn)行,從自然現(xiàn)象到社會(huì)生活,他們幾乎都有一些自己的看法。而且,有些問題即使他們還沒有接觸過,有現(xiàn)成的經(jīng)驗(yàn),但當(dāng)問題一旦呈現(xiàn)在面前時(shí),他們往往也可以基于相關(guān)的經(jīng)驗(yàn),依靠他們的認(rèn)知能力,形成對問題的某種解釋。且,這種解釋并不都是胡亂猜測,而是從他們的經(jīng)驗(yàn)背景出發(fā)而推出的合乎邏輯的假設(shè)。所以,教學(xué)不能無視學(xué)生的這些經(jīng)驗(yàn),起爐灶,從外部裝進(jìn)新知識(shí),而是要把學(xué)生現(xiàn)有的知識(shí)經(jīng)驗(yàn)作為新知識(shí)的生長點(diǎn),引導(dǎo)學(xué)生從原有的知識(shí)經(jīng)驗(yàn)中“生長”出新的識(shí)經(jīng)驗(yàn)。

此我們根據(jù)“情境--問題”教學(xué)模式,沿著“設(shè)置情境--提出問題--解決問題--反思應(yīng)用”這條主線,把從情境中探索和提出數(shù)問題作為教學(xué)的出發(fā)點(diǎn),以“問題”為紅線組織教學(xué),形成以提出問題與解決問題相互引發(fā)攜手并進(jìn)的“情境--問題”學(xué)習(xí)鏈,學(xué)生真正成為提出問題和解決問題的主體,成為知識(shí)的“發(fā)現(xiàn)者”和“創(chuàng)造者”,使教學(xué)過程成為學(xué)生主動(dòng)獲取知識(shí)、發(fā)展能力、驗(yàn)數(shù)學(xué)的過程。根據(jù)上述精神,做出了如下設(shè)計(jì):①創(chuàng)設(shè)一個(gè)現(xiàn)實(shí)問題情境作為提出問題的背景;②啟發(fā)、引導(dǎo)學(xué)生提出自己關(guān)的現(xiàn)實(shí)問題,逐步將現(xiàn)實(shí)問題轉(zhuǎn)化、抽象成過渡性數(shù)學(xué)問題,解決問題時(shí)需要使用余弦定理,借此引發(fā)學(xué)生的認(rèn)知沖突,揭示解三角形的必要性,并使學(xué)生產(chǎn)生進(jìn)一步探索解決問題的動(dòng)機(jī)。然后引導(dǎo)學(xué)生抓住問題的數(shù)學(xué)實(shí)質(zhì),引伸成一般的數(shù)學(xué)問題:已知角形的兩條邊和他們的夾角,求第三邊。③為了解決提出的問題,引導(dǎo)學(xué)生從原有的知識(shí)經(jīng)驗(yàn)中“生長”出新的知識(shí)經(jīng)驗(yàn),通過邊BC的垂線得到兩個(gè)直角三角形,然后利用勾股定理和銳角三角函數(shù)得出余弦定理的表達(dá)式,進(jìn)而引導(dǎo)學(xué)生進(jìn)行嚴(yán)格的邏輯證明。

;二是如何將向量關(guān)系轉(zhuǎn)化成數(shù)量關(guān)系。④由明時(shí),關(guān)鍵在于啟發(fā)、引導(dǎo)學(xué)生明確以下兩點(diǎn):一是證明的起點(diǎn)

生獨(dú)立使用已證明的結(jié)論去解決中所提出的問題。、教學(xué)過程、設(shè)置情境

動(dòng)卸貨汽車的車箱采用液壓機(jī)構(gòu)。設(shè)計(jì)時(shí)需要計(jì)算油泵頂桿 BC的長度(如下圖),已知車箱的最大仰角為60°,油泵頂點(diǎn)B與箱支點(diǎn)A之間的距離為1.95m,AB與水平線之間的夾角為6°20′,AC的長為1.40m,計(jì)算BC的長(保留三個(gè)有效數(shù)字)。、提出問題

:大家想一想,能否把這個(gè)實(shí)際問題抽象為數(shù)學(xué)問題?(數(shù)學(xué)建模),在三角形 ABC,已知AB=1.95m,AC=1.40m,∠BAC=60°+6°20′=66°20′,求BC的長。

:能用正弦定理求解嗎?為什么?

能。正弦定理主要解決:已知三角形的兩邊與一邊的對角,求另一邊的對角;已知三角形的兩角與一邊,求角的對邊。

:這個(gè)問題的實(shí)質(zhì)是什么?

三角形中,已知兩邊和它們的夾角,求第三邊。(一般化)三角形 ABC,知AC=b,BC=a,角C,求AB。、解決問題

:請同學(xué)們想一想,我們以前遇到這種一般問題時(shí),是怎樣處理的?

從特殊圖形入手,尋求答案或發(fā)現(xiàn)解法。(特殊化)

以先在直角三角形中試探一下。

角三角形中 c 2 =a 2 +b 2(勾股定理角C為直角)斜三角形ABC中(如圖3),過A作BC邊上的高AD,將斜三角形轉(zhuǎn)化為直三角形。(聯(lián)想構(gòu)造)

:垂足 D一定在邊BC上嗎?

一定,當(dāng)角 C為鈍角時(shí),點(diǎn)D在BC的延長線上。

分類討論,培養(yǎng)學(xué)生從不同的角度研究問題)

銳角三角形 ABC中,過A作AD垂直BC交BC于D,在直角三角形ADB中,AB 2 =AD 2 +BD 2,在直角三角形ADC中,AD=ACsinC, =ACcosC 即AD=bsinC, CD=bcosC BD=BC-CD,即BD=a-bcosC

c 2 =(bsinC)2 +(a-bcosC)2 2 sin 2 C+a 2-2abcosC+b 2 cos 2 C 2 +b 2-2abcosC 理 a 2 =b 2 +c 2-2bccosA 2 =a 2 +c 2-2accosB 鈍角三角形 ABC中,不妨設(shè)角C為鈍角,過A作AD垂直BC交BC的延長線于D,直角三角形 ADB中,AB 2 =AD 2 +BD 2,在直角三角形ADC中,AD=ACsin(π-C),CD=ACcos(π-C),即AD=bsinC, CD-bcos C,又BD=BC+CD,即BD=a-bcosC

c 2 =(bsinC)2 +(a-bcosC)2 2 sin 2 C+a 2-2abcosC+b 2 cos 2 C 2 +b 2-2abcosC 理 a 2 =b 2 +c 2-2bccosA 2 =a 2 +c 2-2accosB 理可證 a 2 =b 2 +c 2-2bccosA 2 =a 2 +c 2-2accosB :大家回想一下,在證明過程易出錯(cuò)的地方是什么?、反思應(yīng)用

:同學(xué)們通過自己的努力,發(fā)現(xiàn)并證明了余弦定理。余弦定理揭示了三角形中任意兩邊與夾角的關(guān)系,請大家考慮一下,余弦定能夠解決哪些問題?

三求一,即已知三角形的兩邊和它們的夾角,可求另一邊;已知三角形的三條邊,求角。

弦定理三角形任何一邊的平方等于其他兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍。

:請同學(xué)們用余弦定理解決本節(jié)課開始時(shí)的問題。(請一位同學(xué)將他的解題過程寫在黑板上)

:由余弦定理,得

=AB 2 +AC 2-2AB.ACcosA 1.952+1.402-2×1.95×1.40cos66°20′

3.571 BC≈1.89(m):頂桿 BC約長1.89m。

:大家回想一想,三角形中有六個(gè)元素,三條邊及三個(gè)角,知道其中任意三個(gè)元素,是否能求出另外的三個(gè)元素?

能,已知的三個(gè)元素中,至少要有一個(gè)邊。

:解三角形時(shí),何時(shí)用正弦定理?何時(shí)用余弦定理?

知三角形的兩邊與一邊的對角或兩角與一角的對邊,解三角形時(shí),利用正弦定理;已知三角形的兩邊和它們的夾角或三條邊,解角形時(shí),利用余弦定理。

固練習(xí):課本第 131頁練習(xí)1⑵、2⑵、3⑵、4⑵、教學(xué)反思

課中,教師立足于所創(chuàng)設(shè)的情境,通過學(xué)生自主探索、合作交流,親身經(jīng)歷了提出問題、解決問題、應(yīng)用反思的過程,學(xué)生成為弦定理的“發(fā)現(xiàn)者”和“創(chuàng)造者”,切身感受了創(chuàng)造的苦和樂,知識(shí)目標(biāo)、能力目標(biāo)、情感目標(biāo)均得到了較好的落實(shí),為今后的定理教學(xué)”提供了一些有用的借鑒。

設(shè)數(shù)學(xué)情境是“情境.問題.反思.應(yīng)用”教學(xué)的基礎(chǔ)環(huán)節(jié),教師必須對學(xué)生的身心特點(diǎn)、知識(shí)水平、教學(xué)內(nèi)容、教學(xué)目標(biāo)等因素行綜合考慮,對可用的情境進(jìn)行比較,選擇具有較好的教育功能的情境。

應(yīng)用需要出發(fā),創(chuàng)設(shè)認(rèn)知沖突型數(shù)學(xué)情境,是創(chuàng)設(shè)情境的常用方法之一。“余弦定理”具有廣泛的應(yīng)用價(jià)值,故本課中從應(yīng)用需出發(fā)創(chuàng)設(shè)了教學(xué)中所使用的數(shù)學(xué)情境。該情境源于教材第五章 5.10解三角形應(yīng)用舉例的例1。實(shí)踐說明,這種將教材中的例題、題作為素材改造加工成情境,是創(chuàng)設(shè)情境的一條有效途徑。只要教師能對教材進(jìn)行深入、細(xì)致、全面的研究,便不難發(fā)現(xiàn)教材中不少可用的素材。

情境.問題.反思.應(yīng)用”教學(xué)模式主張以問題為“紅線”組織教學(xué)活動(dòng),以學(xué)生作為提出問題的主體,如何引導(dǎo)學(xué)生提出問題是學(xué)成敗的關(guān)鍵,教學(xué)實(shí)驗(yàn)表明,學(xué)生能否提出數(shù)學(xué)問題,不僅受其數(shù)學(xué)基礎(chǔ)、生活經(jīng)歷、學(xué)習(xí)方式等自身因素的影響,還受其所的環(huán)境、教師對提問的態(tài)度等外在因素的制約。因此,教師不僅要注重創(chuàng)設(shè)適宜的數(shù)學(xué)情境(不僅具有豐富的內(nèi)涵,而且還具有問題”的誘導(dǎo)性、啟發(fā)性和探索性),而且要真正轉(zhuǎn)變對學(xué)生提問的態(tài)度,提高引導(dǎo)水平,一方面要鼓勵(lì)學(xué)生大膽地提出問題,一方面要妥善處理學(xué)生提出的問題。關(guān)注學(xué)生學(xué)習(xí)的結(jié)果,更關(guān)注學(xué)生學(xué)習(xí)的過程;關(guān)注學(xué)生數(shù)學(xué)學(xué)習(xí)的水平,更關(guān)注學(xué)生在數(shù)活動(dòng)中所表現(xiàn)出來的情感與態(tài)度;關(guān)注是否給學(xué)生創(chuàng)設(shè)了一種情境,使學(xué)生親身經(jīng)歷了數(shù)學(xué)活動(dòng)過程.把“質(zhì)疑提問”,培養(yǎng)學(xué)

的數(shù)學(xué)問題意識(shí),提高學(xué)生提出數(shù)學(xué)問題的能力作為教與學(xué)活動(dòng)的起點(diǎn)與歸宿。

第三篇:余弦定理證明案例分析

余弦定理證明案例分析

秭歸二中董建華

我今年教高一(3)、一(7)班兩班數(shù)學(xué),在證明余弦定理時(shí),上午第二節(jié)在一(3)班上數(shù)學(xué),在證明余弦定理時(shí),我是這樣上課的:

同學(xué)們,前一節(jié)課我們學(xué)習(xí)了正弦定理及其證,現(xiàn)在請同學(xué)們考慮這樣一個(gè)問題,已知三角形的兩邊及夾角如何求夾角的對邊。

即:在△ABC中,已知AC?b,BC?a,及?C,求C。

請同學(xué)們思考后回答這個(gè)問題,同學(xué)們沉默了

三五分鐘,開始相互討論,并得出了如下解法:

過A作AD?BC于D,是AD=ACsinC?BCsinC,CD?ACcos?bcosc,在Rt?ABD中,AB2?AD2?BD2?(bsinc)2?(a?bcosc)2?a2?b2?2abcosc,用的是初中的知識(shí),我們請同學(xué)們繼續(xù)想,我們學(xué)了向量,能否用向量的知識(shí)加以證明呢?

表現(xiàn)出一片茫然,并開始畫圖分析,討論終于得出

????????????????????????????2????????????2????2????????AB?AB?(AC?BC)?(AC?BC)?AC?2AC?BC?BC?AC?2|AC|?|BC|

????2?cos(180?B)?BC?b2?2abcosB?a2,即。c2?a2?b2?2abcosc 這樣一個(gè)余弦定理證明下來,同學(xué)們分析、觀察、討論用了近30分鐘。我覺得這樣上課太浪費(fèi)時(shí)間,這么簡單的問題,花這么多時(shí)間去討論。

于是我在一(7)班一上課就開門見山的說:“前面我們學(xué)習(xí)了正弦定理及其證明,這節(jié)課我們主要分析余弦定理,即:,a2?b2?c2?2bccosA,b2?a2?c2?2accosB,c2?a2?b2?2abcosC ”

現(xiàn)在我們來證明c2?a2?b2?2abcosC :

????????????????2????????????????證:?AB?AC?BC?AB?AB=(AC?BC)(?AC

?????2????????????2?AC?2AC?BC?BC?b2?2bacosc?a

2即:c2?a2?b2?2abcosc,同理可證其余兩個(gè),同學(xué)們聽懂了沒有,大家齊答聽懂了。前后不過5 分鐘左右的時(shí)間,我當(dāng)時(shí)還感覺我講得不錯(cuò),反正只要學(xué)生聽懂了就行。

結(jié)果一個(gè)星期后,有一個(gè)小測驗(yàn),試卷上剛好有一題是用向量的方法證明余弦定理,成績下來,一(3)班有41人做對了此題,一(7)班僅有7人做對了此題。兩個(gè)平行班,一個(gè)老師教,方法不一樣,效果卻相差如此之大,我對此進(jìn)行了案例反思。

反思案例:

1、定理的證明重在教師引導(dǎo),放手讓學(xué)生去發(fā)現(xiàn)、觀察、分析得出結(jié)論,如采取注入式教師,雖老師一教學(xué)生能聽懂,但畢竟不比自己親手得出的東西印象深刻。

2、引導(dǎo)學(xué)生分析問題,表面上看浪費(fèi)了許多時(shí)間,但教會(huì)了學(xué)生學(xué)習(xí)的方法,以后遇到許多類似的問題根本不需老師重復(fù)去教,學(xué)生自己會(huì)分析,所以從整體上節(jié)約了時(shí)間。

3、我在前一節(jié)課完全是以學(xué)生為主體,后一節(jié)課完全是以老師為主體,在課堂教學(xué)中,應(yīng)將教師的主導(dǎo)作用將學(xué)生的主體作用表現(xiàn)出來,讓教學(xué)效果達(dá)到更優(yōu)化。

總之,通過兩節(jié)課,效果的比較,使我認(rèn)識(shí)到在課堂上要充分引導(dǎo)學(xué)生去分析、觀察、發(fā)現(xiàn)、討論、探究問題,讓學(xué)生做課堂的演員,教師僅僅是節(jié)目的主持人,分工明確,一節(jié)課才是一節(jié)完整的課。

第四篇:余弦定理教材微觀分析

余弦定理教材微觀分析

(一)教材地位和作用

余弦定理選自人教A版必修五第一章第一節(jié)“正弦定理與余弦定理”,主要包括正弦定理與余弦定理兩個(gè)概念。本節(jié)內(nèi)容是第2課時(shí)。教材知識(shí)結(jié)構(gòu)主要研究余弦定理的推導(dǎo)及運(yùn)用余弦定理解三角函數(shù),從數(shù)學(xué)學(xué)習(xí)角度看屬于命題課。余弦定理的學(xué)習(xí)建立在正弦定理、向量運(yùn)算和勾股定理的基礎(chǔ)上,是勾股定理的推廣和正弦定理的補(bǔ)充,將三角形的邊與角聯(lián)系起來,實(shí)現(xiàn)邊角關(guān)系的互化,是解三角形的一個(gè)重要方法,為后面應(yīng)用正、余弦定理測量距離、解決有關(guān)三角形的計(jì)算問題、證明一些三角恒等式,判斷三角形形狀打下了一定的基礎(chǔ)。

教材編排從全等三角形的判定方法出發(fā),引出出問題:“如何計(jì)算出三角形第三邊的長”。讓學(xué)生通過已掌握的向量求模的方法化簡得到余弦定理。再將勾股定理與余弦公式進(jìn)行比較,得出判斷三角形形狀的方法。這樣安排一是符合學(xué)生的認(rèn)知規(guī)律,二是讓學(xué)生經(jīng)歷了定理的產(chǎn)生與證明,加深了對向量運(yùn)算的理解。

(二)核心內(nèi)容和思想

本節(jié)課的核心內(nèi)容是:余弦定理內(nèi)容及其證明,余弦定理在解三角形中的應(yīng)用。因?yàn)橛嘞叶ɡ硎锹?lián)系一般三角形中的邊角關(guān)系的一個(gè)重要工具。從思想方法看,本節(jié)課蘊(yùn)含著數(shù)形結(jié)合、類比思想、轉(zhuǎn)化思想、方程思想,教會(huì)學(xué)生解決三角形問題的基本方法。

(三)教學(xué)重點(diǎn)和難點(diǎn)

余弦定理揭示了三角形中邊和角的數(shù)量關(guān)系,是解三角形的一個(gè)重要工具,為今后判斷三角形形狀,證明與三角形有關(guān)的等式與不等式提供了重要依據(jù),在幾何中有著廣泛應(yīng)用。所以,教學(xué)重點(diǎn)就是余弦定理的內(nèi)容和在三角形邊角計(jì)算中的應(yīng)用。

教學(xué)難點(diǎn)是余弦定理的發(fā)現(xiàn)和公式的推導(dǎo)。余弦定理的證明需要運(yùn)用到向量的數(shù)量積或解析幾何中的兩點(diǎn)間距離公式,學(xué)生很難想到運(yùn)用什么方法推出余弦定理。

(四)分析教學(xué)目標(biāo)

知識(shí)與技能目標(biāo):能夠說出余弦定理,能夠運(yùn)用余弦定理解決實(shí)際問題。過程與方法目標(biāo):在經(jīng)歷向量求模長的過程中探索余弦定理的內(nèi)容。在運(yùn)用余弦定理解決三角形問題中,體會(huì)數(shù)形結(jié)合、轉(zhuǎn)化的思想方法。通過余弦定理和勾股定理的比較,體會(huì)類比的思想方法。

情感、態(tài)度、價(jià)值觀目標(biāo):在余弦定理的證明和應(yīng)用過程中,感受到數(shù)與形的辯證統(tǒng)一和數(shù)學(xué)的實(shí)用性。

(五)例題、習(xí)題的作用和編寫意圖

例3是已知三角形兩邊及其夾角,解三角形,考察學(xué)生對正、余弦定理的綜合運(yùn)用能力。但在運(yùn)用正弦定理時(shí),正弦值為正,對應(yīng)的角可能是銳角,也可能是鈍角,這就需要學(xué)生綜合三角形的邊和角的大小對應(yīng)情況作出準(zhǔn)確判斷。例4是已知三角形三條邊,解三角形。例題采用的是余弦定理加三角形的內(nèi)角和這兩個(gè)知識(shí)點(diǎn)。通過這兩道題讓學(xué)生思考運(yùn)用正余弦公式求解三角形的利弊,歸納出解三角形的問題分為幾類,分別應(yīng)怎樣求解。

第五篇:余弦定理教學(xué)設(shè)計(jì)

教學(xué)設(shè)計(jì)

一、內(nèi)容及其解析

1.內(nèi)容: 余弦定理

2.解析: 余弦定理是繼正弦定理教學(xué)之后又一關(guān)于三角形的邊角關(guān)系準(zhǔn)確量化的一個(gè)重要定理。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的結(jié)果,就是“在任意三角形中大邊對大角,小邊對小角”,“如果已知兩個(gè)三角形的兩條對應(yīng)邊及其所夾的角相等,則這兩個(gè)三角形全等”。同時(shí)學(xué)生在初中階段能解決直角三角形中一些邊角之間的定量關(guān)系。在高中階段,學(xué)生在已有知識(shí)的基礎(chǔ)上,通過對任意三角形邊角關(guān)系的探究,發(fā)現(xiàn)并掌握任意三角形中邊角之間的定量關(guān)系,從而進(jìn)一步運(yùn)用它們解決一些與測量和幾何計(jì)算有關(guān)的實(shí)際問題,使學(xué)生能更深地體會(huì)數(shù)學(xué)來源于生活,數(shù)學(xué)服務(wù)于生活。

二、目標(biāo)及其解析

目標(biāo):

1、使學(xué)生掌握余弦定理及推論,并會(huì)初步運(yùn)用余弦定理及推論解三角形。

2、通過對三角形邊角關(guān)系的探究,能證明余弦定理,了解從三角方法、解析方法、向量方法和正弦定理等途徑證明余弦定理。解析:

1、在發(fā)現(xiàn)和證明余弦定理中,通過聯(lián)想、類比、轉(zhuǎn)化等思想方法比較證明余弦定理的不同 方法,從而培養(yǎng)學(xué)生的發(fā)散思維。

2、能用余弦定理解決生活中的實(shí)際問題,可以培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生進(jìn)一步認(rèn)識(shí)到數(shù)學(xué)是有用的。

三、教學(xué)問題診斷分析

1、通過前一節(jié)正弦定理的學(xué)習(xí),學(xué)生已能解決這樣兩類解三角形的問題:

①已知三角形的任意兩個(gè)角與邊,求其他兩邊和另一角;②已知三角形的任意兩個(gè)角與其中一邊的對角,計(jì)算另一邊的對角,進(jìn)而計(jì)算出其他的邊和角。

而在已知三角形兩邊和它們的夾角,計(jì)算出另一邊和另兩個(gè)角的問題上,學(xué)生產(chǎn)生了認(rèn)知沖突,這就迫切需要他們掌握三角形邊角關(guān)系的另一種定量關(guān)系。所以,教學(xué)的重點(diǎn)應(yīng)放在余弦定理的發(fā)現(xiàn)和證明上。

2、在以往的教學(xué)中存在學(xué)生認(rèn)知比較單一,對余弦定理的證明方法思考也比較單一,而

本節(jié)的教學(xué)難點(diǎn)就在于余弦定理的證明。如何啟發(fā)、引導(dǎo)學(xué)生經(jīng)過聯(lián)想、類比、轉(zhuǎn)化多角度地對余弦定理進(jìn)行證明,從而突破這一難點(diǎn)。

3、學(xué)習(xí)了正弦定理和余弦定理,學(xué)生在解三角形中,如何適當(dāng)?shù)剡x擇定理以達(dá)到更有效地解題,也是本節(jié)內(nèi)容應(yīng)該關(guān)注的問題,特別是求某一個(gè)角有時(shí)既可以用余弦定理,也可以用正弦定理時(shí),教學(xué)中應(yīng)注意讓學(xué)生能理解兩種方法的利弊之處,從而更有效地解題。

四、教學(xué)支持條件分析

為了將學(xué)生從繁瑣的計(jì)算中解脫出來,將精力放在對定理的證明和運(yùn)用上,所以本節(jié)中復(fù)雜的計(jì)算借助計(jì)算器來完成。當(dāng)使用計(jì)算器時(shí),約定當(dāng)計(jì)算器所得的三角函數(shù)值是準(zhǔn)確數(shù)時(shí)用等號(hào),當(dāng)取其近似值時(shí),相應(yīng)的運(yùn)算采用約等號(hào)。但一般的代數(shù)運(yùn)算結(jié)果按通常的運(yùn)算規(guī)則,是近似值時(shí)用約等號(hào)。

五、教學(xué)過程

(一)教學(xué)基本流程

教學(xué)過程:

一、創(chuàng)設(shè)情境,引入課題

問題1:在△ABC中,∠C = 90°,則用勾股定理就可以得到c2=a2+b

2。【設(shè)計(jì)意圖】:引導(dǎo)學(xué)生從最簡單入手,從而通過添加輔助線構(gòu)造直角三角形。師生活動(dòng):引導(dǎo)學(xué)生從特殊入手,用已有的初中所學(xué)的平面幾何的有關(guān)知識(shí)來研究這一問題,從而尋找出這些量之間存在的某種定量關(guān)系。

學(xué)生1:在△ABC中,如圖4,過C作CD⊥AB,垂足為D。在Rt△ACD中,AD=bsin∠1,CD= bcos∠1;在Rt△BCD中,BD=asin∠2, CD=acos∠2;c=(AD+BD)=b-CD+a-CD+2AD?BD

= a?b?2abcos?1?cos?2?2absin?1?sin?2=a?b?2abcos(?1??2)?a?b?2abcosC

A

D圖

4學(xué)生2:如圖5,過A作AD⊥BC,垂足為D。

A

5則:c?AD?BD

2?b?CD?(a?CD)?a?b?2a?CD?a?b?2abcosC

學(xué)生3:如圖5,AD = bsinC,CD = bcosC,∴c2 =(bsinC)2+(a-bcosC)2 = a2 +b2-2abcosC

類似地可以證明b= a+c-2accosB,c= a+b-2abcosC。

【設(shè)計(jì)意圖】:首先肯定學(xué)生成果,進(jìn)一步的追問以上思路是否完整,可以使學(xué)生的思維更加嚴(yán)密。

師生活動(dòng):得出了余弦定理,教師還應(yīng)引導(dǎo)學(xué)生聯(lián)想、類比、轉(zhuǎn)化,思考是否還有其他方法證明余弦定理。

教師:在前面學(xué)習(xí)正弦定理的證明過程種,我們用向量法比較簡便地證明了正弦定理,那么在余弦定理的證明中,你會(huì)有什么想法?

【設(shè)計(jì)意圖】:通過類比、聯(lián)想,讓學(xué)生的思維水平得到進(jìn)一步鍛煉和提高,體驗(yàn)到成功的樂趣。

學(xué)生4:如圖6,????????????記AB?c,CB?a,CA?b????????????則c?AB?CB?CA?a?b???2

2?(c)?(a?b)

?2?2??

?a?b?2a?b?2?2?2??

即c?a?b?2a?b?cosC?c?a?b?2abcosC

A

圖6

【設(shè)計(jì)意圖】:由向量又聯(lián)想到坐標(biāo),引導(dǎo)學(xué)生從直角坐標(biāo)中用解析法證明定理。

學(xué)生7:如圖7,建立直角坐標(biāo)系,在△ABC中,AC = b,BC = a.且A(b,0),B(acosC,asinC),C(0,0),則 c?AB

?(acosC?b)?(asinC)

?a?b?2abcosC

【設(shè)計(jì)意圖】:通過以上平面幾何知識(shí)、向量法、解析法引導(dǎo)學(xué)生體會(huì)證明余弦定理,更好地讓學(xué)生主動(dòng)投入到整個(gè)數(shù)學(xué)學(xué)習(xí)的過程中,培養(yǎng)學(xué)生發(fā)散思維能力,拓展學(xué)生思維空

間的深度和廣度。

二、探究定理 余弦定理:

a

2222222

2?b?c?2bccosA,b?a?c?2accosB,c?a?b?2abcosC

余弦定理推論: cosA?

b?c?a

2bc,cosB?

a?c?b

2ac

222,cosC?

a?b?c

2ab

222

解決類型:(1)已知三角形的三邊,可求出三角;

(2)已知三角形的任意兩邊與兩邊的夾角,可求出另外一邊和兩角。

三、例題

例1:①在△ABC中,已知a = 2,b = 3,∠C = 60°,求邊c。

②在△ABC中,已知a = 7,b = 3,c = 5,求A、B、C。

【設(shè)計(jì)意圖】:讓學(xué)生理解余弦定理及推論解決兩類最基本問題,既①已知三角形兩邊及夾角,求第三邊;②已知三角形三邊,求三內(nèi)角。

四、目標(biāo)檢測

1、若三角形的三邊為2,4,23,那么這個(gè)三角形的形狀為()A.銳角三角形B.直角三角形C.鈍角三角形D.等腰直角三角形 2.已知三角形的三邊為3、4、6,那么此三角形有()

A.三個(gè)銳角 B.兩個(gè)銳角,一個(gè)直角 C.兩個(gè)銳角,一個(gè)鈍角 D.以上都不對 3.在△ABC中,若其三邊的比是a∶b∶c = 3∶5∶7,則三個(gè)內(nèi)角正弦值的比是______.

4.在△ABC中,已知a = 4,b = 6,C = 120°,求sinA.

五、小結(jié)

本節(jié)課的主要內(nèi)容是余弦定理的證明,從平面幾何、向量、坐標(biāo)等各個(gè)不同的方面進(jìn)行探究,得出的余弦定理無論在什么形狀的三角形中都成立,勾股定理也只不過是它的特例。所以它很“完美”,從式子上又可以看出其具“簡捷、和諧、對稱”的美,其變式即推論也很協(xié)調(diào)。

【設(shè)計(jì)意圖】:在學(xué)生探究數(shù)學(xué)美,欣賞美的過程中,體會(huì)數(shù)學(xué)造化之神奇,學(xué)生可以

興趣盎然地掌握公式特征、結(jié)構(gòu)及其他變式。

學(xué)案

1.2 余弦定理

班級(jí)學(xué)號(hào)

一、學(xué)習(xí)目標(biāo)

1、使學(xué)生掌握余弦定理及推論,并會(huì)初步運(yùn)用余弦定理及推論解三角形。

2、通過對三角形邊角關(guān)系的探究,能證明余弦定理,了解從三角方法、解析方法、向量方法和正弦定理等途徑證明余弦定理。

二、例題與問題

例1:①在△ABC中,已知a = 2,b = 3,∠C = 60°,求邊c。

②在△ABC中,已知a = 7,b = 3,c = 5,求A、B、C。

三、目標(biāo)檢測

1、若三角形的三邊為2,4,23,那么這個(gè)三角形的形狀為()A.銳角三角形B.直角三角形C.鈍角三角形D.等腰直角三角形 2.已知三角形的三邊為3、4、6,那么此三角形有()

A.三個(gè)銳角 B.兩個(gè)銳角,一個(gè)直角 C.兩個(gè)銳角,一個(gè)鈍角 D.以上都不對 3.在△ABC中,若其三邊的比是a∶b∶c = 3∶5∶7,則三個(gè)內(nèi)角正弦值的比是______.

4.在△ABC中,已知a = 4,b = 6,C = 120°,求sinA.

配餐作業(yè)

一、基礎(chǔ)題(A組)

1.在△ABC中,若acosA?bcosB,則△ABC的形狀是()A.等腰三角形C.等腰直角三角形

B.直角三角形D.等腰或直角三角形

2.△ABC中,sinA:sinB:sinC?3:2:4,那么cosC?()

A.4B.3C.?

D.?

3.在△ABC中,已知a?2,b?3,C=120°,則sinA的值為()

2157

A.38B.7 C.19 D.3

4.在△ABC中,B=135°,C=15°,a?5,則此三角形的最大邊長為。5.△ABC中,如果a?6,b?63,A=30°,邊c?。

二、鞏固題(B組)

6.在△ABC中,化簡bcosC?ccosB?()

b?c

a?c

a?b

A.a

B.C.D.7.已知三角形的三邊長分別為a、b、a?ab?b,則三角形的最大內(nèi)角是()A.135°

B.120°

C.60°

D.90°

8.三角形的兩邊分別為5和3,它們夾角的余弦是方程5x?7x?6?0的根,則另一邊長為()

A.52B.16

C.4D.2

9.(06年北京卷,理12)在△ABC中,若sinA:sinB:sinC?5:7:8,則∠B的大小是。

三、提高題(C組

tanB

?2a?cc

10.在△ABC中,a,b,c分別是角A、B、C的對邊,且tanCa?b?c?,2ab,(1)求C;(2)求A。

cosB

b2a?c

11.在△ABC中,a,b,c分別是A、B、C的對邊,且cosC(1)求角B的大小;(2)若b?

??,a?c?4,求a的值;

下載余弦定理教學(xué)案例分析word格式文檔
下載余弦定理教學(xué)案例分析.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    余弦定理教學(xué)設(shè)計(jì)

    1.1《正弦定理與余弦定理》教案(新人教版必修5)(原創(chuàng)) 余弦定理 一、教材依據(jù):人民教育出版社(A版)數(shù)學(xué)必修5第一章 第二節(jié) 二、設(shè)計(jì)思想: 1、教材分析:余弦定理是初中“勾股定理”內(nèi)......

    《余弦定理》教學(xué)反思

    本節(jié)課是高中數(shù)學(xué)教材北師大版必修5第二章《解三角形》余弦定理的第一課時(shí)內(nèi)容,《課程標(biāo)準(zhǔn)》和教材把解三角形這部分內(nèi)容安排在必修5,位置相對靠后,在此前學(xué)生已經(jīng)學(xué)習(xí)了三角函......

    教學(xué)案例分析

    二年級(jí)投擲輕物教學(xué)案例 黃爍 這是一節(jié)投擲輕物課。這節(jié)課給我的深刻印象是器材簡單,一物多用,一物貫串全課,寓教于樂,樂中施教。上課了,我利用故事片“兩個(gè)小八路”導(dǎo)入課題,然......

    教學(xué)案例分析

    小學(xué)語文教學(xué)案例分析——抓爭論促生成 劉嬋 【案例】教學(xué)《金色的魚鉤》,老師讓學(xué)生用一定的速度讀課文,完成一道填空題:這是一個(gè)_____的班長。小組合作討論之后,學(xué)生代表發(fā)言。 生:......

    2016教學(xué)案例分析

    2016教學(xué)案例分析范文 第1篇:高中數(shù)學(xué)教學(xué)案例分析范文 一、教學(xué)目標(biāo) 知識(shí)與技能: 理解n次獨(dú)立重復(fù)試驗(yàn)及二項(xiàng)分布模型,會(huì)判斷一個(gè)具體問題是否服從二項(xiàng)分布,培養(yǎng)學(xué)生的自......

    教學(xué)案例分析格式(范文模版)

    教學(xué)案例分析格式 1、課題的主題與背景:介紹各案例內(nèi)容在什么環(huán)境和條件下進(jìn)行的。 2、情景描述:選擇與主題相關(guān)的教學(xué)片段或者情景故事進(jìn)行文學(xué)化的描寫,一方面展示案例問題,另......

    教學(xué)案例分析格式

    教學(xué)案例分析格式 1、課題的主題與背景:介紹各案例內(nèi)容在什么環(huán)境和條件下進(jìn)行的。 2、情景描述:選擇與主題相關(guān)的教學(xué)片段或者情景故事進(jìn)行文學(xué)化的描寫,一方面展示案例問題,另......

    教學(xué)案例分析

    案例一:北京教委頒布新規(guī) 2014年5月19日,北京市教委、市政府教育督導(dǎo)室頒布將于今年5月30日起實(shí)施的《關(guān)于進(jìn)一步規(guī)范義務(wù)教育階段教學(xué)行為的意見》。 意見提出,要確保中小學(xué)生......

主站蜘蛛池模板: 无码专区人妻丝袜| 激情97综合亚洲色婷婷五| 粗大黑人巨精大战欧美成人| 欧美z0zo人禽交免费观看99| 精品日产一卡2卡三卡4卡在线| 欲香欲色天天天综合和网| 女人高潮内射99精品| 无码人妻巨屁股系列| 无码精品人妻一区二区三区免费看| 麻豆精品久久久久久中文字幕无码| 小妖精又紧又湿高潮h视频69| 国产奶头好大揉着好爽视频| 亚洲欧美日韩自偷自拍| 国产产在线精品亚洲aavv| 亚洲av无码一区二区三区天堂| 欧美xxxx做受性欧美88| 亚洲综合无码| 99久久伊人精品综合观看| 天堂…在线最新版资源| 亚洲国产av导航第一福利网| 在线a毛片免费视频观看| 亚洲av日韩av无码| 午夜天堂av久久久噜噜噜| 18禁男女爽爽爽午夜网站免费| 少妇性荡欲视频| 亚洲愉拍99热成人精品| 亚洲午夜无码久久久久| 亚洲熟女中文字幕男人总站| av无码精品一区二区三区宅噜噜| 国产精品久久久久久久久齐齐| 欧美成人精品一区二区综合a片| 日韩人妻无码精品一专区| 国产精品青青青在线观看| 亚洲中文色欧另类欧美| 全部免费毛片在线播放| 色综合色狠狠天天综合色| 成在人线av无码免费漫画| 国产麻豆天美果冻无码视频| 成人精品视频在线观看不卡| 99久久婷婷国产综合精品电影| 亚洲精品第一国产综合精品|