第一篇:《4.5乘法分配律》教案第2課時
《4.5乘法分配律》教案
教學目標
一、知識與技能
1.通過探索乘法分配律中的活動,使學生進一步體驗探索規律的過程。2.使學生在探索的過程中,能自主發現乘法分配律,并能用字母表示。
二、過程與方法
會用乘法分配律進行一些簡便計算。
三、情感態度和價值觀
1.理解并掌握乘法分配律。2.運用乘法分配律進行簡便運算。
教學重點
指導學生探索乘法的分配律。
教學難點
讓學生在活動的過程中發現問題、提出假設、舉例驗證、建立模型。
教學方法
嘗試教學法、自主探究
課前準備
實物投影儀或掛圖(課文插圖)。使用“學樂師生”APP拍照,和同學們分享。
課時安排
2課時。第2課時。
教學過程
一、導入新課
同學們,我們已經學習了乘法的交換律和結合律。今天,希望同學們能探究發現乘法的又一個新知識。
二、新課學習
1.出示:學校購買校服。每件 35元,每條 25元。買這樣3 套校服,一共要多少元? 獨立計算,指名回答教師板演。
2.分析比較:仔細觀察兩種方法,比較一下有什么不同? 3.結論:兩個算式的結果如何?用什么符號連接?
買同樣的東西,計算價錢的方法不同,但用的錢數是一樣的,也就是兩個算式的計算結果相同。這時可以用等號將這兩個算式連接起來。
板書:(35+25)×3=35×3+25×3 4.出示:小強擺圓片,每行擺6個綠圓片,8個紅圓片,共擺了5行。師:小強一共擺了多少個圓片?你能用幾種方法解答?
學生再次各自列式計算,并很快說出兩種不同的思考方法和算式,結合學生回答教師接著上題板書如下:
(6+8)×5 ; 6×5+8×5 雖然用的方法不一樣,但是結果卻一樣,所以我們也可以用等號將這兩個算式連接起來 5.從上面的算式中你有沒有發現什么規律?(設疑)6.你們真的發現了這些算式中隱含著的規律,請與你的同桌交流一下,好嗎?(同桌互相交流)。
7.從大家的神態和臉部表情中,老師知道你們一定覺得自己發現了什么規律。同學們,你們發現了什么,我能猜到。不過,你們所看到的也許只是一種偶然現象,是一種猜想而已。你們能再舉些例子對自己的猜想進行驗證嗎?
學生在練習本上寫一寫,指名匯報。
8.從同學們舉的大量的例子中,可以確定你們的發現是正確的。你們發現的這個規律,叫做乘法分配律。什么叫乘法分配律?你能用語言來描述嗎?請同桌再交流一下。
生1:把括號里的兩個數加起來后乘以一個數,等于把括號里的兩個數都去乘以一個數,再把乘出來的積加起來。
生2:乘法分配律是:左邊把兩個數加起來乘以乘數,等于括號里的一個加數乘以乘數加上括號里的另一個加數乘以乘數。
師:你們想表達的是這樣的意思嗎?(教師板書:兩個數的和與一個數相乘,可以用兩個加數分別與這個數相乘,再把兩個積相加,結果不變。)
這叫做乘法分配律。
能用字母來表示乘法分配律嗎?(結合學生回答,教師板書:(a+b)×c=a×c+b×c。對于乘法分配律,用字母來表示,感覺怎樣——(稍等)簡潔、明了。這就是數學的美。
同學們真是厲害,能夠學以致用。
下面我們來一個比賽,看看誰最能靈活運用我們學過的知識來使我們的計算又對又快。出示:(20+4)×5(75+25)×4 35×37+65×37 20×5+24×5 別急,先觀察題目的特點。指名板演。你發現了什么?
重點在解決先讓學生觀察題目的特點靈活運用運算定律。
三、結論總結
今天學習了乘法分配律,知道了兩個數的和與一個數相乘,等于兩個數分別與一個數相乘,再把兩個積相加。兩個數的差與一個數相乘,可以用這個數分別去乘相減的兩個數,再把積相減,即(a-b)·c=a·c-b·c
四、課堂練習
(1)指4名學生板演,其余同做在練習本上。
(2)展示不同答案:誰的答案和板演者不同?請到黑板前展示出來。
1.練一練
(80+70)×5(80+70)×5 =80×70+70×5=80×5+70×5 2.議一議
(1)你認為誰的答案對,為什么?誰的答案不對,為什么?
(2)第一種答案是把括號里的兩個加數相乘了,不符合乘法分配律,所以錯了;第二種答案符合乘法分配律,所以是正確的。
(3)用同樣的方法評議其余3題。
(4)同桌互改
(5)統計錯題情況,讓小組代表說說錯誤原因。
(6)學生各自訂正錯題。
五、作業布置
完成《課課練》4.5.2乘法分配律。
六、板書設計
乘法的分配律
濟青高速公路全長大約多少千米? 相遇時大巴車比中巴車多行多少千米?(110+90)×2=110×2+90×2(110-90)×2=110×2-90×2
驗證:
(125+12)×8 = 125×8+12×8
(40-4)×25 = 40×25-4×25(8+16)×125 = 8×125+16×125
(80-8)×125 = 80×125-8×125
結論:用字母表示:(a± b)·c=a·c±b?c)
(2+3+5)×4=2×4+3×4+5×4
(1000+100+10)×3=1000×3+100×3+10×3
拓展:多個數的和(或差)乘一個數,可以把它們分別乘這個數,再把所得的積 相加(或相減),結果不變。
第二篇:乘法分配律第一課時教案
乘法分配律第一課時教案
夾河學校 李本關
一,教學目標
1、讓學生在解決問題的過程中發現并理解乘法分配律,初步了解乘法分配律的應用。
2、讓學生在發現規律的過程中,發展比較,分析,抽象和概括的能力,增強用符號表達數學規律的意識,進一步體會數學與生活的聯系。
3、讓學生感受數學規律的確定性和普及適用性,獲得發現數學規律的愉悅感和成功感,增強學習的興趣和自信。
二,教學重點難點
理解乘法分配律,初步了解乘法分配律的應用。
三,教學過程
(一),創設問題情景
(二),展開探索過程。
1、初步感知。提問:仔細觀察,從圖中你獲得了哪些信息?;買這些服裝,老師一共要付多少元呢?你是怎樣解決這個問題的?(學生獨立思考,交流反饋:你是怎樣想的?)板書:65×5+45×5(65+45)×5(提問:這兩種方法的計算結果怎樣?)學生計算驗證;談話:雖然這兩個算式樣子不同,但是計算結果是相等的。我們就可以把兩個算式寫成一個等式。
2、類比展開。提問;假如老師選擇的是另兩種服裝,買的數量都是6件,8件的,你還能用兩種方法來求一共要付的錢數嗎?
要求:每一組編一題,用兩種方法列出綜合算式,并計算出結果,比一比哪組完成得又快又好!板書:32×6+65×6(32+65)×6 提問:既然這些算式每組得結果都相等,那么我們都可以把它寫成什么?談話:像這樣得情況,是偶然還是有其中得規律呢?(大家不妨再舉幾個例子,再算一算,舉例,小組交流,挑選幾組板書。
3、體驗感悟。談話:大家舉了很多例子來說服老師,看來,這種情況不是偶然的,也不是巧合,而是有其中內在的規律。小聲地讀這些算式這中間隱藏著什么規律呢?(學生用自己的語言描述發現的規律。)通過觀察,同學們或多或少都發現了一些規律,現在老師給每個小組提供了一些算式,根據你剛才的觀察,你覺得這些算式中,哪兩個可以用等號連起來就把它們挑出來,如果有爭議可以算一算來驗證一下。(出示課件)交流:哪個小組來匯報?你能想個辦法,使那些不能組成等式的變成能組成等式的嗎?
4、揭示規律
(三)、鞏固內化
1、做“想想做做”的第1題。
學生獨立填寫,指名報答案,全班共同校對。提問:你們是根據什么這樣填寫的?第1題和第2題在乘法分配律的應用上有什么不同的地方?
2、做“想想做做”的第2題。
學生自己判斷。提問:你是怎么判斷的?你能說說第三組兩道算式為什么是相等的嗎?第四組的兩道算式為什么不相等?怎樣改一下能使它們相等?
3、做“想想做做”的第3題。
讓每位學生都用兩種方法計算長方形的周長,指名板演。提問:這兩種算法有什么聯系?符合什么規律?
4、做“想想做做”的第4題。
讓學生各自按運算順序計算,指定兩人板演,共同訂正。提問:每組兩道算式有什么聯系?哪一種比較簡便?(四)、總結回顧
第三篇:乘法分配律教案
乘法分配律
教學目標:1.引導學生探究和理解乘法分配律。
2.培養學生根據具體情況,選擇算法的意識與能力,發展思維的靈活性。
3.使學生感受數學與現實生活的聯系,能用所學知識解決簡單的實際問題。
教學重點:
乘法分配律的意義和應用。
教學難點:
乘法分配律的反應用。
一、鋪墊孕埋伏
同學們,在學習新課前我們先來個比賽,請同學們準備好紙和筆,左邊同學做第一題,右邊同學做第二題,看看哪組先做完。
9ⅹ 37+9ⅹ369ⅹ(37+36)
做完的同學請舉手,很明顯右邊的同學比較快,這兩題有什么聯系嗎?他們的運算順序不同可結果是相同。這就是我們這節課要研究的乘法分配律。(板書)
二授新
請看例題:
小組討論,嘗試用不同的方法解決。
教師引導學生用多種方法解答。
學生匯報自己的解法。引導學生說明不同算法的理由。
(1)(4+2)×25
=6×25
=150(人)
4+2是每組一共有多少人,在乘25就算出25個小組一共有多少人了。
(2)4×25+2×25
=100+50
=150(人)
4×25表示25個小組一共有多少個人負責挖坑、種樹,2×25表示25個小組一共有多少人負責抬水、澆樹。再把它們加起來就是一共有多少人了。
小組合作:
(1)兩組算式有什么相同點?
(2)兩組算式有什么不同點?
(3)有什么規律嗎?
教師的匯報,靈活地進行引導,總結出要點。
你還能舉出像這樣的幾組算式嗎?
學生舉例。
根據學生舉例板書。
到底我們舉的例子是不是符合這樣的規律呢?請學生驗證。
用字母表示出來嗎?
同學們真棒,知道了什么是乘法分配律。那我再讓同學們來個開火車的游戲。先想一想,怎樣填,哪一組愿意來?
鞏固練習
完成填一填
判斷
同學們還記得上課時咱們的比賽嗎?那組算的快?那是不是說明應用乘法分配律可以使計算簡便呀。同學們來驗證一下,請看這兩道題。
學生匯報自己的收獲。
教師引導小結,相應完善板書。
板書設計:
乘法分配律
一共有多少名同學參加了這次植樹活動?
(1)(4+2)×25(2)4×25+2×25
=6×25=100+50
=150(人)=150(人)
(4+2)×25=4×25+2×25
┆(學生舉例)
(a+b)×c=a×c+b×c
兩個數的和與一個數相乘,可以先把它們與這個
數分別相乘,再相加。這叫做乘法分配律。
第四篇:乘法分配律教案
四年級數學公開課教案
(2010—2011學年第一學期)
課題:探索與發現(三)《乘法分配律》
教學內容:北師大版四上數學P47-50的內容。教學目標:
1、通過探索乘法分配律活動,應用乘法分配律進行簡便運算。
2、使學生在探索過程中,能自主發現乘法分配律,并能用字母表示。
3、會用乘法分配律進行一些簡便計算。教學重、難點:
重點:指導學生探索乘法分配律。難點:發現并歸納乘法分配律。學情分析:
學生已掌握一定探索規律的方法和思路,因此本課結合實際情景通過解決應用問題發現規律并驗證最終歸納出字母表達式應該問題不大,但應用規律進行簡算時困難會比較大。
學法指導:情景引入——發現規律——舉例驗證——歸納總結——實踐運用
教具準備:掛圖(課文插圖)。教學過程:
一、導入談話
師:同學們們,通過探索活動我們已經發現了一些數學規律,并應用規律如乘法結合律等解決問題。這一節課,我們再一起去探索,看看我們又會發現什么規律。
板書:探索與發現
(三)?
今天,又有什么發現呢?讓我們一起走上探索之路。
(一)探索交流,發現規律。
1、出現課文插圖(實物投影或掛圖)師:一共貼了多少塊瓷磚?你怎么算?
2、先讓學生獨立思考,然后在小組中交流。讓每個學生都在小組中說一說是怎么想的。
3、反饋交流情況。由小組派代表匯報交流結果(有選擇的板書)。生:6×9+4×9 生:(6+4)×9 = 10×9 =54+36
=90(塊)
=90(塊)要求學生結合插圖說明算式的意義。
4、指導學生觀察算式的特點。
5、舉例驗證。如:(40+4)×25和40×25+4×25 42×64+42×36和42×(64+36)討論交流:
(1)交流學生的舉例是否符合要求;(2)交流算式的共同特點;
(3)還有什么發現?(簡便運算)
6、字母表示。
如果用a、b、c分別表示三個數,你能寫出你的發現嗎? 學生先獨立完成,然后小組交流。最后板。(a+b)×c=a×c+b×c
7、揭示課題。
三、應用規律,解決問題 課本第48頁的“試一試”。
1、(80+4)×25(1)指導觀察算式特點,看是否符合要求,能否應用乘法分配律使計算簡便。
(2)鼓勵學生獨自計算。2、34×72+34×28(1)指導觀察算式特點,看是否符號要求。(2)簡便計算過程,并得出結果。
四、鞏固練習
完成課本第48頁的“練一煉”。
(1)第1題,簡單的應用乘法分配律進行計算。(2)第2題,注意指導一些算式的計算方法。99×11:可以看成(100-1)×11=1100-11 或看成99×(10+1)=990+99 38×29+38應該把算式看作:38×29+×1。
五、課堂小結
六、作業
課本第48頁練一練剩余習題
刁
鵬 二0一0年十月
第五篇:《乘法分配律》教案
乘法分配律
教學目標
1.使學生理解乘法分配律的意義.
2.掌握乘法分配律的應用.
3.通過觀察、分析、比較,培養學生的分析、推理和概括能力.
教學重點
乘法分配律的意義及應用.
教學難點
乘法分配律的反應用.
教具學具準備
口算卡片、投影儀.
教學步驟
一、鋪墊孕伏
1.口算.
(27+73)×8
40×9+40×1
14×(10+2)
10×6+10×4
2.用簡便方法計算.(說明根據什么簡算的)25×63×4
3.師生比賽,看誰算得又對又快.
20×5+5×80
(1250+125)×8
讓學生說明是怎樣算的?
二、探究新知
1.導入
:
剛才的比賽老師算得快,是因為老師又運用了乘法的一個法寶,知道了乘法的又一個定律可以使運算簡便,你們想知道嗎?這就是我們今天要研究的內容.(板書課題:乘法分配律).
2.教學例6:
(1)出示例6:演示課件“乘法分配律”出示例6 下載
(2)引導學生觀察每組的兩個算式.
(3)教師提問:從上面的例子你發現了什么規律?
(4)學生明確:每組中的兩個算式都可以用等號連接.
教師板書:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教師出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
學生分組討論:每組中算式所表示的意義.
(6)反饋練習:按題要求,請你說出一個等式.(投影出示)
(__+__)×__=__+__×
教師提問:像符合這種條件的式子還有許多,那么這些算式到底有什么規律呢?
引導學生觀察:等號左右兩邊算式的規律性
啟發學生回答:首先是等號左邊兩個數的和同一個數相乘.
其次是等號右邊兩個加數分別同一個數相乘再把兩個積相加.
最后是等號左右兩邊的兩個算式相等.
3.教師概括運算定律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變.這叫做乘法分配律.
4.反饋練習:
橫線上能填幾?為什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教師:為了簡便易記,如果用a、b、c表示3個數, 乘法分配律用字母怎樣表示?
根據練習學生從而得出:
(a+b)×c=a×c+b×c
使學生明確:有的題兩個數的和同一個數相乘比較簡便,有的題把兩個加數分別同這個數相乘,再把兩個積相加比較簡便.
5.教學例7:演示課件“乘法分配律”出示例7 下載
(1)出示例7:102×43
啟發學生想:能否把算式改成乘法分配律的形式,然后應用運算定律進行簡算?
引導學生對比:(100+2)×43,102×(40+3)這兩種算式哪種比較簡便?
使學生明確:兩個數相乘,把其中一個比較接近整
十、整百、整千的數改寫成一個整
十、整百、整千的數與一個數的和,再應用乘法分配律可以使計算簡便.
教師板書:
(轉載自本網http://www.tmdps.cn,請保留此標記。)(2)出示9×37+9×63
引導學生觀察:這類題目的結構形式是怎樣的?有什么特點?
教師提問:根據乘法分配律,可以把原式改寫成什么形式?
根據學生的回答教師板書:9×37+9×63 =9×(37+63)=9×100
=900
學生討論:這樣算為什么簡便?
師生共同總結:①這類題目的結構形式的特點是式子的運算符號一般是×、+、×的形式,也就是兩個積的和.
②在兩個乘法式子中,有一個相同的因數,也就是兩個數的和要乘的那個數.
③另外兩個不同的因數,是兩個能湊成整
十、整百、整千的加數.
(3)揭示教師算得快的奧秘
上課開始時,我們已經比賽看誰算得快,如(1250+125)×8,老師就是應用的乘法分配律使計算簡便.現在你們會了嗎?
三、鞏固發展 演示課件“乘法分配律”出示練習下載
1.練習十四第1題.
根據運算定律在□里填上適當的數.
(43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2.在橫線上填上適當的數.
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__)×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)題之前教師要提醒學生明確此類題,必須是兩個積里有相同的因數,才能把相同的因數提到括號外面,然后讓學生獨立填寫.
3.把相等的算式用等號連接起來:
(1)32×48+32×52 32×(48+52)(2)(24+8)×8 24×5+24×8
(3)20×(l+15)0×17+20×15
(4)(40+28)×5 40×5+ 28
(5)(10×125)×8 10×8+125×8
(6)4×(30+25)4×30×4×25
學生做后共同訂正,并討論(2)、(4)、(5)、(6)為什么不能用等號連接起來?
4.選擇題:
(1)28×(42+29)與下面的()相等
①28×42+28×29 ②(28+42)×(28+29)③28×42×29
(2)與a×8-b×8相等的式于是()
①(a+b)×8 ②(a-b)×(8+8)③(a-b)×8
(3)與(10+8+9)×5相等的式子是()
①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9
5.練習十四第4題,投影出示.
一輛鳳凰牌自行車420元,一輛永久牌自行車405元.現在各買三輛.買鳳凰車和永久車一共用多少元?
四、課堂小結
今天我們學習了乘法分配律,知道了兩個數的和與一個數相乘,等于兩個數分別與這個數相乘,再把兩個積相加.希望同學們在以后的計算中能夠靈活運用乘法的運算定律使一些計算簡便.
五、布置作業
練習十四第3題.
用簡便方法計算下面各題.
(80+8)×25 35×37+65×37
32×(200+3)38×29+38
板書設計
您可以訪問本網(www.tmdps.cn)查看更多與本文《數學教案-乘法分配律》相關的文章。