久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

數(shù)學(xué)勾股定理教學(xué)設(shè)計(jì)2(合集五篇)

時(shí)間:2019-05-12 18:18:39下載本文作者:會(huì)員上傳
簡(jiǎn)介:寫(xiě)寫(xiě)幫文庫(kù)小編為你整理了多篇相關(guān)的《數(shù)學(xué)勾股定理教學(xué)設(shè)計(jì)2》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫(xiě)寫(xiě)幫文庫(kù)還可以找到更多《數(shù)學(xué)勾股定理教學(xué)設(shè)計(jì)2》。

第一篇:數(shù)學(xué)勾股定理教學(xué)設(shè)計(jì)2

[課題]:勾股定理

[教學(xué)目的]:

1、知識(shí)目標(biāo):讓學(xué)生了解勾股定理的推導(dǎo)和證明,并能熟練地運(yùn)用勾股定理求出直角三角形中邊的長(zhǎng)度;

2、能力目標(biāo):通過(guò)圖形的觀察、拼接和定理的證明,強(qiáng)化學(xué)生數(shù)形結(jié)合的思想,通過(guò)探究勾股定理的不同證明方法,開(kāi)發(fā)學(xué)生的發(fā)散性思維;

3、情感與態(tài)度:通過(guò)對(duì)勾股定理有關(guān)歷史的了解,讓學(xué)生認(rèn)識(shí)到歷史悠久的中華文明,從而激發(fā)他們對(duì)數(shù)學(xué)學(xué)習(xí)的興趣及對(duì)祖國(guó)的熱愛(ài)之情。

[教學(xué)重點(diǎn)]:勾股定理的內(nèi)容及證明 [教學(xué)難點(diǎn)]:用拼圖方法證明勾股定理 [教學(xué)方法]:講解、觀察、分析、演示

[教學(xué)用品]:多媒體、自制教具、勾股定理演示儀 [教學(xué)內(nèi)容與過(guò)程]:

一、引出課題:

在前面,我們學(xué)習(xí)了直角三角形的有關(guān)知識(shí),這節(jié)課我們進(jìn)一步學(xué)習(xí)和探究直角三角形的三邊之間的特有性質(zhì)—勾股定理。

展示教學(xué)幻燈片一(1)教學(xué)情景一: 首先,讓學(xué)生在練習(xí)本上完成如下作圖(圖一): 展示教學(xué)幻燈片二

做一做、量一量:作一個(gè)直角三角形,使它的兩個(gè)直角邊分別 為3cm和4cm,并量出它的斜邊長(zhǎng)度。

(圖一)

(圖二)(2)教學(xué)情景二: 展示教學(xué)幻燈片三

讓學(xué)生在練習(xí)本上完成作圖二,教師演示、小結(jié)

畫(huà)一畫(huà)、算一算:分別以圖一的直角三角形的三邊為邊。作三個(gè)正方形,得到圖二,這三個(gè)正方形的面積有何關(guān)系?

通過(guò)作圖發(fā)現(xiàn):

(在展示教學(xué)幻燈片三時(shí),先小結(jié):)圖一中直角三角形的斜邊長(zhǎng)是5厘米;

展示教學(xué)幻燈片四,并小結(jié): 圖二中正方形的面積存在如下關(guān)系:以斜邊為邊的正方形的面積,恰好等于以兩直角邊為邊的正方形的面積之和,即:

3+ 4=

5一邊講解,一邊展示展示教學(xué)幻燈片四,然后,用勾股定理演示儀向?qū)W生演示面積出入相補(bǔ)的原理,引導(dǎo)學(xué)生發(fā)出由個(gè)別到一般 的思考,接著,引出課題,并且展示教學(xué)幻燈片五

引出課題:是否所有的直角三角形都具有這個(gè)性質(zhì)呢?即任作△ABC,∠C是直角,BC=a,AC=b,AB=c,那么a2 + b2 = c2 是否成立呢?

二、探究新知:

將事先準(zhǔn)備好的兩套自制教具向?qū)W生展示并分發(fā)下去,讓學(xué)生拼湊圖形,要求將每一套圖片拼成兩個(gè)新的大正方形,看誰(shuí)拼得又快又好(可以讓兩名學(xué)生在黑板上拼接并粘貼好),如下圖:

(圖三)

(圖四)

引導(dǎo)學(xué)生觀察、分析,發(fā)現(xiàn):甲、乙兩個(gè)正方形的面積相等,即: c2 + 0.5ab?4 = a2 + b2 + 0.5ab?4

∴ a2 + b2 = c2 由此得到下面的定理(展示教學(xué)幻燈片六):

勾股定理:直角三角形兩直角邊a、b的平方和,等于斜邊c 的平方,即a2 + b2 = c2 <探 究>:能不能只利用圖三,來(lái)證明勾股定理呢?

(讓學(xué)生觀察、討論,在教師的引導(dǎo)下寫(xiě)出證明過(guò)程):

因?yàn)閳D中大正方形的面積等于小正方形的面積與四個(gè)三角形的面積之和,即:

(a+b)2 = c2 + 0.5ab?4 a2 +2ab +b2 = c2+2ab ∴ a2 + b2 = c2(點(diǎn)評(píng)):據(jù)不完全統(tǒng)計(jì),勾股定理的證明方法已有400多種,大家可以查閱有關(guān)資料去了解,或思考其他的證明方法。

根據(jù)勾股定理的公式,對(duì)于一個(gè)直角三角形,我們只要知道它的任意兩邊長(zhǎng),就能求出第三邊的長(zhǎng)。

三、練習(xí)鞏固:(展示教學(xué)幻燈片七)

練習(xí)

1、<說(shuō)一說(shuō)>:如圖,在等腰三角形ABC中,已知AB=AC=13cm,BC=10cm。⑴你能算出BC邊上的高AD的長(zhǎng)嗎? ⑵△ABC的面積是多少呢?

(圖五)

(展示教學(xué)幻燈片八)

練習(xí)

2、圖中是一個(gè)邊長(zhǎng)為a厘米的正方形,兩條對(duì)角線交于點(diǎn)O,回答:

⑴圖中有多少個(gè)直角三角形 ⑵△ABC的面積是多少呢?

(圖六)

四、小結(jié)提高:

(1)(展示教學(xué)幻燈片九)這節(jié)課我們學(xué)習(xí)的內(nèi)容是勾股定理,這個(gè)定理向我們揭示了直角三角形三邊之間的數(shù)量關(guān)系,它是一個(gè)十分重要而著名的定理,在許多領(lǐng)域存在重要的應(yīng)用價(jià)值。

(2)(展示教學(xué)幻燈片十)向?qū)W生簡(jiǎn)單介紹勾股定理的來(lái)歷,解釋“勾、股、弦”的含義。

(3)激勵(lì):同學(xué)們,中華文化源遠(yuǎn)流長(zhǎng),希望大家努力學(xué)習(xí),繼承和發(fā)揚(yáng)中華文明,讓我們偉大的民族雄立于世界民族之林!

五、作業(yè)布置: 見(jiàn)教材第98頁(yè)第2題

六、板書(shū)內(nèi)容設(shè)計(jì):

1、標(biāo)題:勾股定理

2、練習(xí)題

3、勾股定理的內(nèi)容

4、自制教具的粘貼

5、勾股定理的證明

七、教學(xué)評(píng)價(jià):

教學(xué)過(guò)程評(píng)價(jià):

1、關(guān)注學(xué)生是否積極參加探索勾股定理的活動(dòng),關(guān)注學(xué)生能否在活動(dòng)中積極思考,能夠探索出解決問(wèn)題的方法,能否進(jìn)行積極的聯(lián)想(數(shù)形結(jié)合)以及學(xué)生能否有條理的表達(dá)活動(dòng)過(guò)程和所獲得的結(jié)論等;

2、關(guān)注學(xué)生的拼圖過(guò)程,鼓勵(lì)學(xué)生結(jié)合自己所拼得的正方形驗(yàn)證勾股定理。

知識(shí)性評(píng)價(jià):

1、學(xué)生是否掌握勾股定理內(nèi)容及證明,體會(huì)數(shù)形結(jié)合的思想

2、學(xué)生是否能熟練運(yùn)用勾股定理解決實(shí)際問(wèn)題,內(nèi)化知識(shí)形成技巧

課后自我評(píng)價(jià):

本節(jié)課在教學(xué)過(guò)程中設(shè)計(jì)的一系列的教學(xué)環(huán)節(jié),充分體現(xiàn)了新課改的理念。“數(shù)因形而直觀,形因數(shù)而入微”數(shù)形結(jié)合,由特殊到一般,突出重點(diǎn),突破難點(diǎn),抓住關(guān)鍵,課堂練習(xí)及時(shí)反饋,正確評(píng)價(jià)等等這一系列的教學(xué)環(huán)節(jié)的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維和創(chuàng)新意識(shí)都起了非常重要的作用。

第二篇:八年級(jí)數(shù)學(xué)勾股定理教學(xué)設(shè)計(jì)

八年級(jí)數(shù)學(xué)勾股定理教學(xué)設(shè)計(jì)

八年級(jí)數(shù)學(xué)勾股定理教學(xué)設(shè)計(jì)1

一、教學(xué)任務(wù)分析

勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫(huà)了直角三角形的特點(diǎn)。學(xué)習(xí)勾股定理極其逆定理是進(jìn)一步認(rèn)識(shí)和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)。《20xx版數(shù)學(xué)課程標(biāo)準(zhǔn)》對(duì)勾股定理教學(xué)內(nèi)容的要求是:

1、在研究圖形性質(zhì)和運(yùn)動(dòng)等過(guò)程中,進(jìn)一步發(fā)展空間觀念;

2、在多種形式的數(shù)學(xué)活動(dòng)中,發(fā)展合情推理能力;

3、經(jīng)歷從不同角度分析問(wèn)題和解決問(wèn)題的方法的過(guò)程,體驗(yàn)解決問(wèn)題方法的多樣性;

4、探索勾股定理及其逆定理,并能運(yùn)用它們解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

本節(jié)《勾股定理的應(yīng)用》是北師大版八年級(jí)數(shù)學(xué)上冊(cè)第一章《勾股定理》第3節(jié)、具體內(nèi)容是運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題、在這些具體問(wèn)題的解決過(guò)程中,需要經(jīng)歷幾何圖形的抽象過(guò)程,需要借助觀察、操作等實(shí)踐活動(dòng),這些都有助于發(fā)展學(xué)生的分析問(wèn)題、解決問(wèn)題能力和應(yīng)用意識(shí);有些探究活動(dòng)具有一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力、

本節(jié)課的教學(xué)目標(biāo)是:

1、能正確運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題。

2、經(jīng)歷實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題的過(guò)程,學(xué)會(huì)選擇適當(dāng)?shù)臄?shù)學(xué)模型解決實(shí)際問(wèn)題,提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力并體會(huì)數(shù)學(xué)建模的思想、

教學(xué)重點(diǎn)和難點(diǎn):

應(yīng)用勾股定理及其逆定理解決實(shí)際問(wèn)題是重點(diǎn)。

把實(shí)際問(wèn)題化歸成數(shù)學(xué)模型是難點(diǎn)。

二、教學(xué)設(shè)想

根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋和運(yùn)用的同時(shí),在思維能力情感態(tài)度和價(jià)值觀等方面得到進(jìn)步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實(shí)際問(wèn)題情境 ,使教學(xué)活動(dòng)充滿趣味性和吸引力,讓他們?cè)谧灾魈骄浚献鹘涣髦蟹治鰡?wèn)題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問(wèn)題。在教學(xué)過(guò)程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學(xué)生在獲得知識(shí)的同時(shí)提高能力。

在教學(xué)設(shè)計(jì)中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識(shí)由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。

三、教學(xué)過(guò)程分析

本節(jié)課設(shè)計(jì)了七個(gè)環(huán) 《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)節(jié)、第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):變式訓(xùn)練;第四環(huán)節(jié):議一議;第五環(huán)節(jié):做一做;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)、

第一環(huán)節(jié):情境引入

情景1:復(fù)習(xí)提 問(wèn):勾股定理的語(yǔ)言表述以及幾何語(yǔ)言表達(dá)?

設(shè)計(jì)意圖:溫習(xí)舊知識(shí),規(guī)范語(yǔ)言及數(shù)學(xué)表達(dá),體現(xiàn)

數(shù)學(xué)的 嚴(yán)謹(jǐn)性和規(guī)范性。《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)情景2: 腦筋急轉(zhuǎn)彎一個(gè)三角形的兩條邊是3和4,第三邊是多少?

設(shè)計(jì)意圖:既靈活考察學(xué)生對(duì)勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。

第二環(huán)節(jié):合作探究(圓柱體表面路程最短問(wèn)題)

情景3:課本引例(螞蟻怎樣走最近)

設(shè)計(jì)意圖:從有趣的生活場(chǎng)景引入,學(xué)生探究熱情高漲,通過(guò)實(shí)際動(dòng)手操作,結(jié)合問(wèn)題逆向思考,或是回想兩點(diǎn)之間線段最短,通過(guò)合作交流將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型從而利用勾股定理解決,在活動(dòng)中體驗(yàn)數(shù)學(xué)建模,培養(yǎng)學(xué)生與人合作交流的能力,增強(qiáng)學(xué)生探究能力,操作能力,分析能力,發(fā)展空間觀念、

第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問(wèn)題逐步變?yōu)殚L(zhǎng)方體表面的'距離最短問(wèn)題)

設(shè)計(jì)意圖:將問(wèn)題的條件稍做改變,讓學(xué)生嘗試獨(dú)立解決,拓展學(xué)生視野,又加深他們對(duì)知識(shí)的理解和鞏固。再將圓柱問(wèn)題變?yōu)檎襟w長(zhǎng)方體問(wèn)題,學(xué)生有了之前的經(jīng)驗(yàn),自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長(zhǎng)方體問(wèn)題中學(xué)生會(huì)有不同的做法,正好透分類討論思想。

第四環(huán)節(jié):議一議

內(nèi)容:李叔叔想要檢測(cè)雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)(1)你能替他想辦法完成任務(wù)嗎?

(2)李叔叔量得AD長(zhǎng)是30厘米,AB長(zhǎng)是40厘米,BD長(zhǎng)是50厘米,AD邊垂直于AB邊嗎?為什么?

(3)小明隨身只有一個(gè)長(zhǎng)度為20厘米的刻度尺,他能有辦法檢驗(yàn)AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

設(shè)計(jì)意圖:

運(yùn)用勾股定理逆定理來(lái)解決實(shí)際問(wèn)題,讓學(xué)生學(xué)會(huì)分析問(wèn)題,正確合理選擇數(shù)學(xué)模型,感受由數(shù)到形的轉(zhuǎn)化,利用允許的工具靈活處理問(wèn)題、

第五環(huán)節(jié):方程與勾股定理

在我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問(wèn)題,這個(gè)問(wèn)題的意思是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池的中央有《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,請(qǐng)問(wèn)這個(gè)水池的深度和這根蘆葦?shù)拈L(zhǎng)度各是多 少尺?《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)意圖:學(xué)生可以進(jìn)一步了解勾股定理的悠久歷史和廣泛應(yīng)用,了解我國(guó)古代人民的聰明才智;學(xué)會(huì)運(yùn)用方程的思想借助勾股定理解決實(shí)際問(wèn)題。、

第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):

1、解決實(shí)際問(wèn)題的方法是建立數(shù)學(xué)模型求解、

2、在尋求最短路徑時(shí),往往把空間問(wèn)題平面化,利用勾股定理及其逆定理解決實(shí)際問(wèn)題、

3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。

意圖:鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史、《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)第七環(huán)作業(yè)設(shè)計(jì):

第一道題難度較小,大部分學(xué)生可以獨(dú)立完成,第二道題有較大難度,可以交流討論完成。

八年級(jí)數(shù)學(xué)勾股定理教學(xué)設(shè)計(jì)2

教學(xué)目標(biāo)具體要求:

1.知識(shí)與技能目標(biāo):會(huì)用勾股定理及直角三角形的判定條件解決實(shí)際問(wèn)題。

2.過(guò)程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過(guò)程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。

3.情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。

重點(diǎn):

勾股定理的應(yīng)用

難點(diǎn):

勾股定理的應(yīng)用

教案設(shè)計(jì)

一、知識(shí)點(diǎn)講解

知識(shí)點(diǎn)1:(已知兩邊求第三邊)

1.在直角三角形中,若兩直角邊的長(zhǎng)分別為1cm,2cm,則斜邊長(zhǎng)為_(kāi)____________。

2.已知直角三角形的兩邊長(zhǎng)為3、4,則另一條邊長(zhǎng)是______________。

3.三角形ABC中,AB=10,AC=17,BC邊上的高線AD=8,求BC的長(zhǎng)?

知識(shí)點(diǎn)2:

利用方程求線段長(zhǎng)

1、如圖,公路上A,B兩點(diǎn)相距25km,C,D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在公路AB上建一車(chē)站E,

(1)使得C,D兩村到E站的距離相等,E站建在離A站多少km處?

(2)DE與CE的位置關(guān)系

(3)使得C,D兩村到E站的距離最短,E站建在離A站多少km處?

利用方程解決翻折問(wèn)題

2、如圖,用一張長(zhǎng)方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB為8cm,長(zhǎng)BC為10cm.當(dāng)折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F處(折痕為AE).想一想,此時(shí)EC有多長(zhǎng)?

3、在矩形紙片ABCD中,AD=4cm,AB=10cm,按圖所示方式折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF,求DE的長(zhǎng)。

4.如圖,將一個(gè)邊長(zhǎng)分別為4、8的矩形形紙片ABCD折疊,使C點(diǎn)與A點(diǎn)重合,則EF的長(zhǎng)是多少?

5、折疊矩形ABCD的一邊AD,折痕為AE,且使點(diǎn)D落在BC邊上的點(diǎn)F處,已知AB=8cm,BC=10cm,以B點(diǎn)為原點(diǎn),BC為x軸,BA為y軸建立平面直角坐標(biāo)系。求點(diǎn)F和點(diǎn)E坐標(biāo)。

6、邊長(zhǎng)為8和4的矩形OABC的兩邊分別在直角坐標(biāo)系的x軸和y軸上,若沿對(duì)角線AC折疊后,點(diǎn)B落在第四象限B1處,設(shè)B1C交x軸于點(diǎn)D,求(1)三角形ADC的面積,(2)點(diǎn)B1的坐標(biāo),(3)AB1所在的直線解析式.

知識(shí)點(diǎn)3:判斷一個(gè)三角形是否為直角三角形間接給出三邊的長(zhǎng)度或比例關(guān)系

1.(1).若一個(gè)三角形的周長(zhǎng)12cm,一邊長(zhǎng)為3cm,其他兩邊之差為1cm,則這個(gè)三角形是___________。

(2).將直角三角形的三邊擴(kuò)大相同的倍數(shù)后,得到的三角形是____________。

(3)在ABC中,a:b:c=1:1:,那么ABC的確切形狀是_____________。

2.如圖,正方形ABCD中,邊長(zhǎng)為4,F(xiàn)為DC的中點(diǎn),E為BC上一點(diǎn),CE=BC,你能說(shuō)明∠AFE是直角嗎?

變式:如圖,正方形ABCD中,F(xiàn)為DC的中點(diǎn),E為BC上一點(diǎn),且CE=BC,你能說(shuō)明∠AFE是直角嗎?

3.一位同學(xué)向西南走40米后,又走了50米,再走30米回到原地。問(wèn)這位同學(xué)又走了50米后向哪個(gè)方向走了

二、課堂小結(jié)

談一談你這節(jié)課都有哪些收獲?

應(yīng)用勾股定理解決實(shí)際問(wèn)題

三、課堂練習(xí)以上習(xí)題。

四、課后作業(yè)卷子。

本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對(duì)勾股定理的觀察、計(jì)算、猜想、證明及簡(jiǎn)單應(yīng)用的`過(guò)程;第二課時(shí)是通過(guò)例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過(guò)從實(shí)際問(wèn)題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問(wèn)題的意識(shí)和應(yīng)用能力。

針對(duì)本班學(xué)生的特點(diǎn),學(xué)生知識(shí)水平、學(xué)習(xí)能力的差距,本節(jié)課安排了如下幾個(gè)環(huán)節(jié):

一、復(fù)習(xí)引入

對(duì)上節(jié)課勾股定理內(nèi)容進(jìn)行回顧,強(qiáng)調(diào)易錯(cuò)點(diǎn)。由于學(xué)生的注意力集中時(shí)間較短,學(xué)生知識(shí)水平低,引入內(nèi)容簡(jiǎn)短明了,花費(fèi)時(shí)間短。

二、例題講解,鞏固練習(xí),總結(jié)數(shù)學(xué)思想方法

活動(dòng)一:用對(duì)媒體展示搬運(yùn)工搬木板的問(wèn)題,讓學(xué)生以小組交流合作,如何將木板運(yùn)進(jìn)門(mén)內(nèi)?需要知道們的寬、高,還是其他的條件?學(xué)生展示交流結(jié)果,之后教師引導(dǎo)學(xué)生書(shū)寫(xiě)板書(shū)。整個(gè)活動(dòng)以學(xué)生為主體,教師及時(shí)的引導(dǎo)和強(qiáng)調(diào)。

活動(dòng)二:解決例二梯子滑落的問(wèn)題。學(xué)生自主討論解決問(wèn)題,書(shū)寫(xiě)過(guò)程,之后投影學(xué)生書(shū)寫(xiě)過(guò)程,教師與學(xué)生一起合作修改解題過(guò)程。

活動(dòng)三:學(xué)生討論總結(jié)如何將實(shí)際生活中的問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,然后利用勾股定理解決問(wèn)題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學(xué)活動(dòng)中發(fā)展了學(xué)生的探究意識(shí)和合作交流的習(xí)慣;體會(huì)勾股定理的應(yīng)用價(jià)值,讓學(xué)生體會(huì)到數(shù)學(xué)來(lái)源于生活,又應(yīng)用到生活中去,在學(xué)習(xí)的過(guò)程中體會(huì)獲得成功的喜悅,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。

二、鞏固練習(xí),熟練新知

通過(guò)測(cè)量旗桿活動(dòng),發(fā)展學(xué)生的探究意識(shí),培養(yǎng)學(xué)生動(dòng)手操作的能力,增加學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的經(jīng)驗(yàn)和感受。

在教學(xué)設(shè)計(jì)的實(shí)施中,也存在著一些問(wèn)題:

1.由于本班學(xué)生能力的差距,本想著通過(guò)學(xué)生幫帶活動(dòng),使學(xué)困生充分參與課堂,但在學(xué)生合作交流是由于學(xué)習(xí)能力強(qiáng)的學(xué)生,對(duì)問(wèn)題的分析解決所用時(shí)間短,而在整個(gè)環(huán)節(jié)設(shè)計(jì)中轉(zhuǎn)接的快,未給學(xué)困生充分的時(shí)間,導(dǎo)致部分學(xué)生未能真正的參與到課堂中來(lái)。

2.課堂上質(zhì)疑追問(wèn)要起到好處,不要增加學(xué)生展示的難度,影響展示進(jìn)程出現(xiàn)中斷或偏離主題的現(xiàn)象。

3.對(duì)學(xué)生課堂展示的評(píng)價(jià)方式應(yīng)體現(xiàn)生評(píng)生,師評(píng)生,及評(píng)價(jià)的針對(duì)性和及時(shí)性。

八年級(jí)數(shù)學(xué)勾股定理教學(xué)設(shè)計(jì)3

教學(xué)目標(biāo)

1、知識(shí)與技能目標(biāo)

學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念、

2、過(guò)程與方法

(1)經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力、

(2)在將實(shí)際問(wèn)題抽象成幾何圖形過(guò)程中,提高分析問(wèn)題、解決問(wèn)題的能力及滲透數(shù)學(xué)建模的思想、

3、情感態(tài)度與價(jià)值觀

(1)通過(guò)有趣的問(wèn)題提高學(xué)習(xí)數(shù)學(xué)的興趣、

(2)在解決實(shí)際問(wèn)題的過(guò)程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性、

教學(xué)重點(diǎn):

探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問(wèn)題、

教學(xué)難點(diǎn):

利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問(wèn)題、

教學(xué)準(zhǔn)備:

多媒體課件

教學(xué)過(guò)程:

第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)

情景:

如圖:在一個(gè)圓柱石凳上,若小明在吃東西時(shí)留下了一點(diǎn)

食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于

是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?

第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)

學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過(guò)具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開(kāi)后展開(kāi)得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問(wèn)題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算、

學(xué)生匯總了四種方案:

(1)(2)(

學(xué)生很容易算出:情形(1)中A→B的路線長(zhǎng)為:AA’+d,

情形(2)中A→B的路線長(zhǎng)為:AA’+πd/2

所以情形(1)的路線比情形(2)要短、

學(xué)生在情形(3)和(4)的比較中出現(xiàn)困難,但還是有學(xué)生提出用剪刀沿母線AA’剪開(kāi)圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據(jù)兩點(diǎn)之間線段最短可判斷(4)最短、

如圖:

(1)中A→B的路線長(zhǎng)為:AA’+d;

(2)中A→B的`路線長(zhǎng)為:AA’+A’B>AB;

(3)中A→B的路線長(zhǎng)為:AO+OB>AB;

(4)中A→B的路線長(zhǎng)為:AB。

得出結(jié)論:利用展開(kāi)圖中兩點(diǎn)之間,線段最短解決問(wèn)題、

在這個(gè)環(huán)節(jié)中,可讓學(xué)生沿母線剪開(kāi)圓柱體,具體觀察、

接下來(lái)后提問(wèn):怎樣計(jì)算AB?

在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12cm,底面半徑為3cm,π取3,則。

第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)

教材23頁(yè)

李叔叔想要檢測(cè)雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,

(1)你能替他想辦法完成任務(wù)嗎?

(2)李叔叔量得AD長(zhǎng)是30厘米,AB長(zhǎng)是40厘米,BD長(zhǎng)是50厘米,AD邊垂直于AB邊嗎?為什么?

(3)小明隨身只有一個(gè)長(zhǎng)度為20厘米的刻度尺,他能有辦法檢驗(yàn)AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)

1、甲、乙兩位探險(xiǎn)者到沙漠進(jìn)行探險(xiǎn),某日早晨8:00甲先出發(fā),他以6km/h的速度向正東行走,1小時(shí)后乙出發(fā),他以5km/h的速度向正北行走、上午10:00,甲、乙兩人相距多遠(yuǎn)?

2、如圖,臺(tái)階A處的螞蟻要爬到B處搬運(yùn)食物,它怎么走最近?并求出最近距離、

3、有一個(gè)高為1。5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0。5米,問(wèn)這根鐵棒有多長(zhǎng)?

第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問(wèn)答)

內(nèi)容:

1、如何利用勾股定理及逆定理解決最短路程問(wèn)題?

第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)

內(nèi)容:

作業(yè):1、課本習(xí)題1、5第1,2,3題、

要求:A組(學(xué)優(yōu)生):1、2、3

B組(中等生):1、2

C組(后三分之一生):1

第三篇:勾股定理教學(xué)設(shè)計(jì)(通用)[范文模版]

勾股定理教學(xué)設(shè)計(jì)(通用5篇)

作為一位無(wú)私奉獻(xiàn)的人民教師,很有必要精心設(shè)計(jì)一份教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以更大幅度地提高學(xué)生各方面的能力,從而使學(xué)生獲得良好的發(fā)展。那要怎么寫(xiě)好教學(xué)設(shè)計(jì)呢?以下是小編精心整理的勾股定理教學(xué)設(shè)計(jì)(通用5篇),歡迎大家分享。

勾股定理教學(xué)設(shè)計(jì)1

一、教學(xué)目標(biāo)

1、讓學(xué)生通過(guò)對(duì)的圖形創(chuàng)造、觀察、思考、猜想、驗(yàn)證等過(guò)程,體會(huì)勾股定理的產(chǎn)生過(guò)程。

2、通過(guò)介紹我國(guó)古代研究勾股定理的成就感培養(yǎng)民族自豪感,激發(fā)學(xué)生為祖國(guó)的復(fù)興努力學(xué)習(xí)。

3、培養(yǎng)學(xué)生數(shù)學(xué)發(fā)現(xiàn)、數(shù)學(xué)分析和數(shù)學(xué)推理證明的能力。

二、教學(xué)重難點(diǎn)

利用拼圖證明勾股定理

三、學(xué)具準(zhǔn)備

四個(gè)全等的直角三角形、方格紙、固體膠

四、教學(xué)過(guò)程

(一)趣味涂鴉,引入情景

教師:很多同學(xué)都喜歡在紙上涂涂畫(huà)畫(huà),今天想請(qǐng)大家?guī)屠蠋熗瓿梢环盔f,你能按要求完成嗎?

(1)在邊長(zhǎng)為1的方格紙上任意畫(huà)一個(gè)頂點(diǎn)都在格點(diǎn)上的直角三角形。

(2)再分別以這個(gè)三角形的三邊向三角形外作3個(gè)正方形。

學(xué)生活動(dòng):先獨(dú)立完成,再在小組內(nèi)互相交流畫(huà)法,最后班級(jí)展示。

(二)小組探究,大膽猜想

教師:觀察自己所涂鴉的圖形,回答下列問(wèn)題:

1、請(qǐng)求出三個(gè)正方形的面積,再說(shuō)說(shuō)這些面積之間具有怎樣的數(shù)量關(guān)系?

2、圖中所畫(huà)的直角三角形的邊長(zhǎng)分別是多少?請(qǐng)根據(jù)面積之間的關(guān)系寫(xiě)出邊長(zhǎng)之間存在的數(shù)量關(guān)系。

3、與小組成員交流探究結(jié)果?并猜想:如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a,b,c具有怎樣的數(shù)量關(guān)系?

4、方法提煉:這種利用面積相等得出直角三角形三邊等量關(guān)系的方法叫做什么方法?

學(xué)生活動(dòng):先獨(dú)立思考,再在小組內(nèi)互相交流探究結(jié)果,并猜想直角三角形的三邊關(guān)系,最后班級(jí)展示。

(三)趣味拼圖,驗(yàn)證猜想

教師:請(qǐng)利用四個(gè)全等的直角三角形進(jìn)行拼圖。

1、你能拼出哪些圖形?能拼出正方形和直角梯形嗎?

2、能否就你拼出的圖形利用面積法說(shuō)明a2+b2=c2的合理性?如果可以,請(qǐng)寫(xiě)下自己的推理過(guò)程。

學(xué)生活動(dòng):獨(dú)立拼圖,并思考如何利用圖形寫(xiě)出相應(yīng)的證明過(guò)程,再在組內(nèi)交流算法,最后在班級(jí)展示。

(四)課堂訓(xùn)練

鞏固提升

教師:請(qǐng)完成下列問(wèn)題,并上臺(tái)進(jìn)行展示。

1.在Rt△ABC中,∠C=900,∠A,∠B,∠C的對(duì)邊分別為a,b,c

已知a=6,b=8.求c.已知c=25,b=15.求a.已知c=9,a=3.求b.(結(jié)果保留根號(hào))

學(xué)生活動(dòng):先獨(dú)立完成問(wèn)題,再組內(nèi)交流解題心得,最后上臺(tái)展示,其他小組幫助解決問(wèn)題。

(五)課堂小結(jié),梳理知識(shí)

教師:說(shuō)說(shuō)自己這節(jié)課有哪些收獲?請(qǐng)從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法、數(shù)學(xué)運(yùn)用等方向進(jìn)行總結(jié)。

勾股定理教學(xué)設(shè)計(jì)2

教學(xué)目標(biāo)具體要求:

1.知識(shí)與技能目標(biāo):會(huì)用勾股定理及直角三角形的判定條件解決實(shí)際問(wèn)題。

2.過(guò)程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過(guò)程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。

3.情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。

重點(diǎn):

勾股定理的應(yīng)用

難點(diǎn):

勾股定理的應(yīng)用

教案設(shè)計(jì)

一、知識(shí)點(diǎn)講解

知識(shí)點(diǎn)1:(已知兩邊求第三邊)

1.在直角三角形中,若兩直角邊的長(zhǎng)分別為1cm,2cm,則斜邊長(zhǎng)為xx。

2.已知直角三角形的兩邊長(zhǎng)為3、4,則另一條邊長(zhǎng)是xx。

3.三角形ABC中,AB=10,AC=17,BC邊上的高線AD=8,求BC的長(zhǎng)?

知識(shí)點(diǎn)2:

利用方程求線段長(zhǎng)

1、如圖,公路上A,B兩點(diǎn)相距25km,C,D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在公路AB上建一車(chē)站E,(1)使得C,D兩村到E站的距離相等,E站建在離A站多少km處?

(2)DE與CE的位置關(guān)系

(3)使得C,D兩村到E站的距離最短,E站建在離A站多少km處?

利用方程解決翻折問(wèn)題

2、如圖,用一張長(zhǎng)方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB為8cm,長(zhǎng)BC為10cm.當(dāng)折疊時(shí),頂點(diǎn)D落在BC邊上的'點(diǎn)F處(折痕為AE).想一想,此時(shí)EC有多長(zhǎng)?

3、在矩形紙片ABCD中,AD=4cm,AB=10cm,按圖所示方式折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF,求DE的長(zhǎng)。

二、課堂小結(jié)

談一談你這節(jié)課都有哪些收獲?

應(yīng)用勾股定理解決實(shí)際問(wèn)題

三、課堂練習(xí)以上習(xí)題。

四、課后作業(yè)卷子。

本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對(duì)勾股定理的觀察、計(jì)算、猜想、證明及簡(jiǎn)單應(yīng)用的過(guò)程;第二課時(shí)是通過(guò)例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過(guò)從實(shí)際問(wèn)題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問(wèn)題的意識(shí)和應(yīng)用能力。

勾股定理教學(xué)設(shè)計(jì)3

教學(xué)目標(biāo):

理解并掌握勾股定理及其證明。在學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”勾股定理的過(guò)程中,發(fā)展合情推理能力,體會(huì)數(shù)形結(jié)合和從特殊到一般的思想。通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神

重點(diǎn)

探索和證明勾股定理。

難點(diǎn)

用拼圖方法證明勾股定理。

教學(xué)準(zhǔn)備:

教具

多媒體課件。

學(xué)具

剪刀和邊長(zhǎng)分別為a、b的兩個(gè)連體正方形紙片。

教學(xué)流程安排

活動(dòng)流程圖 活動(dòng)內(nèi)容和目的活動(dòng)1 創(chuàng)設(shè)情境→激發(fā)興趣 通過(guò)對(duì)趙爽弦圖的了解,激發(fā)起學(xué)生對(duì)勾股定理的探索興趣。

活動(dòng)2 觀察特例→發(fā)現(xiàn)新知 通過(guò)問(wèn)題激發(fā)學(xué)生好奇、探究和主動(dòng)學(xué)習(xí)的欲望。

活動(dòng)3 深入探究→交流歸納 觀察分析方格圖,得出直角三角形的性質(zhì)——勾股定理,發(fā)展學(xué)生分析問(wèn)題的能力。

活動(dòng)4 拼圖驗(yàn)證→加深理解 通過(guò)剪拼趙爽弦圖證明勾股定理,體會(huì)數(shù)形結(jié)合思想,激發(fā)探索精神。

活動(dòng)5 實(shí)踐應(yīng)用→拓展提高 初步應(yīng)用所學(xué)知識(shí),加深理解。

活動(dòng)6 回顧小結(jié)→整體感知 回顧、反思、交流。

活動(dòng)7 布置作業(yè)→鞏固加深 鞏固、發(fā)展提高。

勾股定理教學(xué)設(shè)計(jì)4

一、教案背景概述:

教材分析: 勾股定理是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角的“形”的特點(diǎn),轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計(jì)算問(wèn)題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說(shuō)明勾股定理的正確性。

學(xué)生分析:

1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過(guò)三角尺的同學(xué)并不多,通過(guò)這樣的情景設(shè)計(jì),能非常簡(jiǎn)單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。

2、以與勾股定理有關(guān)的人文歷史知識(shí)為背景展開(kāi)對(duì)直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。

設(shè)計(jì)理念:本教案以學(xué)生手中舞動(dòng)的三角尺為知識(shí)背景展開(kāi),以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對(duì)勾股定理的發(fā)展過(guò)程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗(yàn)勾股定理的探索和運(yùn)用過(guò)程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過(guò)向?qū)W生介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。

教學(xué)目標(biāo):

1、經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過(guò)程,培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。

2、經(jīng)歷用多種割、補(bǔ)圖形的方法驗(yàn)證勾股定理的過(guò)程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界和有條理地思考能力以及語(yǔ)言表達(dá)能力等,感受勾股定理的文化價(jià)值。

3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛(ài)國(guó)熱情。

4、欣賞設(shè)計(jì)圖形美。

二、教案運(yùn)行描述:

教學(xué)準(zhǔn)備階段:

學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。

老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。

三、教學(xué)流程:

(一)引入

同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時(shí),你是否想過(guò):他們的邊有什么關(guān)系呢?今天我們來(lái)探索這一小秘密。(板書(shū)課題:探索直角三角形三邊關(guān)系)

(二)實(shí)驗(yàn)探究

1、取方格紙片,在上面先設(shè)計(jì)任意格點(diǎn)直角三角形,再以它們的每一邊分別向三角形外作正方形,設(shè)網(wǎng)格正方形的邊長(zhǎng)為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計(jì)算每個(gè)正方形的面積,以四人小組為單位填寫(xiě)下表:

(討論難點(diǎn):以斜邊為邊的正方形的面積找法)

交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)

(三)探索所得結(jié)論的正確性

當(dāng)直角三角形的直角邊分別為a、b,斜邊為c時(shí),是否一定成立?

1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計(jì)合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)

在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來(lái)交流講解,并引導(dǎo)學(xué)生進(jìn)行說(shuō)理:

如圖2(用補(bǔ)的方法說(shuō)明)

師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門(mén)就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來(lái)尺子和筆又量又畫(huà),他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對(duì)角線為邊向形外作正方形的面積。于是他回到家里立刻對(duì)他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來(lái)西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為“畢達(dá)哥拉斯定理”。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計(jì)的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見(jiàn)課本52頁(yè)彩圖2—1,欣賞圖片)

如圖3(用割的方法去探索)

師介紹:(出示圖片)中國(guó)古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個(gè)結(jié)論。早在公元前2000年左右,大禹治水時(shí)期,就曾經(jīng)用過(guò)此方法測(cè)量土地的等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用“勾三、股四、弦五”測(cè)量土地,他們對(duì)這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國(guó)時(shí)期吳國(guó)數(shù)學(xué)家趙爽曾構(gòu)造此圖驗(yàn)證了這一結(jié)論的正確性。他的這個(gè)證明,可謂別具匠心,極富創(chuàng)新意識(shí),他用幾何圖形的割、來(lái)證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國(guó)古代以“形”證“數(shù)”,形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹(shù)立了一個(gè)典范。他是我國(guó)有記載以來(lái)第一個(gè)證明這一結(jié)論的數(shù)學(xué)家。我國(guó)數(shù)學(xué)家們?yōu)榱思o(jì)念我國(guó)在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為“勾股定理”。

20xx年,世界數(shù)學(xué)家大會(huì)在中國(guó)北京召開(kāi),當(dāng)時(shí)選用這個(gè)圖案作為會(huì)場(chǎng)主圖,它標(biāo)志著我國(guó)古代數(shù)學(xué)的輝煌成就。

師介紹:(出示圖片)勾股定理是數(shù)學(xué)史上的一顆璀璨明珠,它的證明在數(shù)學(xué)史上屢創(chuàng)奇跡,從畢達(dá)哥拉斯到現(xiàn)在,吸引著世界上無(wú)數(shù)的數(shù)學(xué)家、物理學(xué)家、數(shù)學(xué)愛(ài)好者對(duì)它的探究,甚至政界要人——美國(guó)第20任總統(tǒng)加菲爾德,也加入到對(duì)它的探索證明中,如圖是他當(dāng)年設(shè)計(jì)的證明方法。據(jù)說(shuō)至今已經(jīng)找到的證明方法有四百多種,且每年還會(huì)有所增加。,有興趣的同學(xué)課后可以繼續(xù)探索……

四、總結(jié):

本節(jié)課學(xué)習(xí)的勾股定理用語(yǔ)言敘說(shuō)為:

五、作業(yè):

1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問(wèn)題并交流。

2、探索勾股定理的運(yùn)用。

勾股定理教學(xué)設(shè)計(jì)5

一、教學(xué)目標(biāo)

(一)知識(shí)點(diǎn)

1、體驗(yàn)勾股定理的探索過(guò)程,由特例猜想勾股定理,再由特例驗(yàn)證勾股定理。

2、會(huì)利用勾股定理解釋生活中的簡(jiǎn)單現(xiàn)象。

(二)能力訓(xùn)練要求

1、在學(xué)生充分觀察、歸納、猜想、探索勾股定理的過(guò)程中,發(fā)展合情推理能力,體會(huì)數(shù)形結(jié)合的思想。

2、在探索勾股定理的過(guò)程中,發(fā)展學(xué)生歸納、概括和有條理地表達(dá)活動(dòng)過(guò)程及結(jié)論的能力。

(三)情感與價(jià)值觀要求

1、培養(yǎng)學(xué)生積極參與、合作交流的意識(shí)。

2、在探索勾股定理的過(guò)程中,體驗(yàn)獲得成功的快樂(lè),鍛煉學(xué)生克服困難的勇氣。

二、教學(xué)重、難點(diǎn)

重點(diǎn):探索和驗(yàn)證勾股定理。

難點(diǎn):在方格紙上通過(guò)計(jì)算面積的方法探索勾股定理。

三、教學(xué)方法

交流探索猜想。

在方格紙上,同學(xué)們通過(guò)計(jì)算以直角三角形的三邊為邊長(zhǎng)的三個(gè)正方形的面積,在合作交流的過(guò)程中,比較這三個(gè)正方形的面積,由此猜想出直角三角形的三邊關(guān)系。

四、教具準(zhǔn)備

1、學(xué)生每人課前準(zhǔn)備若干張方格紙。

2、投影片三張:

第一張:填空(記作1.1.1 A);

第二張:?jiǎn)栴}串(記作1.1.1 B);

第三張:做一做(記作1.1.1 C)。

五、教學(xué)過(guò)程

創(chuàng)設(shè)問(wèn)題情境,引入新課

出示投影片(1.1.1 A)

(1)三角形按角分類,可分為xx。

(2)對(duì)于一般的三角形來(lái)說(shuō),判斷它們?nèi)鹊臈l件有哪些?對(duì)于直角三角形呢?

(3)有兩個(gè)直角三角形,如果有兩條邊對(duì)應(yīng)相等,那么這兩個(gè)直角三角形一定全等嗎?

第四篇:勾股定理教學(xué)設(shè)計(jì)

勾股定理教學(xué)設(shè)計(jì)

勇 【教學(xué)目標(biāo)】

一、知識(shí)目標(biāo)

1.了解勾股定理的歷史背景,體會(huì)勾股定理的探索過(guò)程.2.掌握直角三角形中的三邊關(guān)系和三角之間的關(guān)系。

二、數(shù)學(xué)思考

在勾股定理的探索過(guò)程中,發(fā)現(xiàn)合理推理能力.體會(huì)數(shù)形結(jié)合的思想.三、解決問(wèn)題

1.通過(guò)探究勾股定理(正方形方格中)的過(guò)程,體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性。

2.在探究活動(dòng)中,學(xué)會(huì)與人合作并能與他人交流思維的過(guò)程和探究的結(jié)果。

四、情感態(tài)度目標(biāo)

1.學(xué)生通過(guò)適當(dāng)訓(xùn)練,養(yǎng)成數(shù)學(xué)說(shuō)理的習(xí)慣,培養(yǎng)學(xué)生參與的積極性,逐步體驗(yàn)數(shù)學(xué)

說(shuō)理的重要性。

2.在探究活動(dòng)中,體驗(yàn)解決問(wèn)題方法的多樣性,培養(yǎng)學(xué)生的合作交流意識(shí)和探究精神。【重點(diǎn)難點(diǎn)】

重點(diǎn):探索和證明勾股定理。

難點(diǎn):應(yīng)用勾股定理時(shí)斜邊的平方等于兩直角邊的平方和。

疑點(diǎn):靈活運(yùn)用勾股定理。【教學(xué)過(guò)程設(shè)計(jì)】 【活動(dòng)一】

(一)問(wèn)題與情景

1、你聽(tīng)說(shuō)過(guò)“勾股定理”嗎?

(1)勾股定理古希臘數(shù)學(xué)家畢達(dá)哥拉斯發(fā)現(xiàn)的,西方國(guó)家稱勾股定理為“畢達(dá)哥拉斯”定理

(2)我國(guó)著名的《算經(jīng)十書(shū)》最早的一部《周髀算經(jīng)》。書(shū)中記載有“勾廣三,股修四,徑隅五。”這作為勾股定理特例的出現(xiàn)。

2、畢答哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用的地磚鋪成的地面反映了直角三角形的某寫(xiě)特性。(1)現(xiàn)在請(qǐng)你一觀察一下,你能發(fā)現(xiàn)什么?(2)一般直角三角形是否也有這樣的特點(diǎn)嗎?

(二)師生行為

教師講故事(勾股定理的發(fā)現(xiàn))、展示圖片,參與小組活動(dòng),指導(dǎo)、傾聽(tīng)學(xué)生交流。針對(duì)不同認(rèn)識(shí)水平的學(xué)生,引導(dǎo)其用不同的方法得出大正方形的面積等于兩個(gè)小正方形的面積之和。學(xué)生聽(tīng)故事發(fā)表見(jiàn)解,分組交流、在獨(dú)立思考的基礎(chǔ)上以小組為單位,采用分割、拼接、數(shù)格子的個(gè)數(shù)等等方法。闡述自己發(fā)現(xiàn)的結(jié)論。【活動(dòng)二】

(一)問(wèn)題與情景

(1)以直角三角形的兩直角邊a,b拼一個(gè)正方形,你能拼出來(lái)嗎?(2)面積分別怎樣來(lái)表示,它們有什么關(guān)系呢?

(二)師生行為

教師提出問(wèn)題,學(xué)生在獨(dú)立思考的基礎(chǔ)上以小組為單位,動(dòng)手拼接。

學(xué)生展示分割、拼接的過(guò)程

學(xué)生通過(guò)圖形的拼接、分割,通過(guò)數(shù)學(xué)的計(jì)算發(fā)現(xiàn)結(jié)論。

教師通過(guò)(FLASH課件演示拼接動(dòng)畫(huà))圖1生共同來(lái)完成勾股定理的數(shù)學(xué)驗(yàn)證。

得出結(jié)論:

直角三角形的兩條直角邊的平方和等于斜邊的平方

教師引導(dǎo)學(xué)生通過(guò)圖

1、圖2的拼接(FLASH課件演示拼接動(dòng)畫(huà))讓學(xué)生發(fā)現(xiàn)結(jié)論。

【活動(dòng)三】

(一)問(wèn)題與情景

例題:例

1、甲船以10海里/小時(shí)的速度從港口向北航行,乙船以20海里/小時(shí)的速度從港口向東航行,同時(shí)行駛3小時(shí)后乙遇險(xiǎn),甲調(diào)轉(zhuǎn)航向前去搶救,船長(zhǎng)想知道兩地間的距離,你能幫忙算一下嗎?

2、在我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問(wèn)題,這個(gè)問(wèn)題的意思是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池的中央有一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,請(qǐng)問(wèn)這個(gè)水池的深度和這根蘆葦?shù)拈L(zhǎng)度各是多少? 練習(xí):在Rt△ABC中,∠A,∠B,∠C的對(duì)邊為a,b,c(1)已知∠C是Rt∠,a=6,b=8.則c=

(2)(2)已知∠C是Rt∠,c=25,b=15.則a=

(3)已知∠C是Rt∠,a:b=3:4,c=25,則b=

(二)師生行為

教師提出問(wèn)題。學(xué)生思考、交流,解答問(wèn)題。教師正確引導(dǎo)學(xué)生正確運(yùn)用勾股定理來(lái)解決實(shí)際問(wèn)題。針對(duì)練習(xí)可以通過(guò)讓學(xué)生來(lái)演示結(jié)果,形成共識(shí)。【活動(dòng)四】

(一)問(wèn)題與情景

1、通過(guò)本節(jié)課你學(xué)到哪些知識(shí)?有什么體會(huì)?

2、布置作業(yè)

①通過(guò)上網(wǎng)收集有關(guān)勾股定理的資料,以及證明方法。② P77復(fù)習(xí)鞏固1、2、3、4題

(二)師生行為

教師以問(wèn)題的形式提出,讓學(xué)生歸納、總結(jié)所學(xué)知識(shí),進(jìn)行自我評(píng)價(jià),自我總結(jié).學(xué)生把作業(yè)做在作業(yè)本上,教師檢查、批改.勾股定理【教學(xué)反思】

教學(xué)的成功體驗(yàn):《數(shù)學(xué)課程標(biāo)準(zhǔn)》明確指出:“有效的數(shù)學(xué)活動(dòng)不能單純地依賴于模仿與記憶,學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式是動(dòng)手實(shí)踐、自主探索與合作交流,以促進(jìn)學(xué)生自主、全面、可持續(xù)發(fā)展”.數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間相互交往、積極互動(dòng)、共同發(fā)展的過(guò)程,是“溝通”與“合作”的過(guò)程.本節(jié)課我結(jié)合勾股定理的歷史和畢答哥拉斯的發(fā)現(xiàn)直角三角形的特性自然地引入了課題,讓學(xué)生親身體驗(yàn)到數(shù)學(xué)知識(shí)來(lái)源于實(shí)踐,從而激發(fā)學(xué)生的學(xué)習(xí)積極性.為學(xué)生提供了大量的操作、思考和交流的學(xué)習(xí)機(jī)會(huì),通過(guò) “觀察“——“操作”——“交流”發(fā)現(xiàn)勾股定理。層層深入,逐步體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成、發(fā)展與應(yīng)用過(guò)程.通過(guò)引導(dǎo)學(xué)生在具體操作活動(dòng)中進(jìn)行獨(dú)立思考,鼓勵(lì)學(xué)生發(fā)表自己的見(jiàn)解,學(xué)生自主地發(fā)現(xiàn)問(wèn)題、探索問(wèn)題、獲得結(jié)論的學(xué)習(xí)方式,有利于學(xué)生在活動(dòng)中思考,在思考中活動(dòng).勾股定理【教學(xué)反思】

本節(jié)課是公式課,探索勾股定理和利用數(shù)形結(jié)合的方法驗(yàn)證勾股定理。勾股定理是在學(xué)生已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它是解直角三角形的主要根據(jù)之一,是直角三角形的一條非常重要的性質(zhì),也是幾何中最重要的定理之一,它將形與數(shù)密切聯(lián)系起來(lái),在數(shù)學(xué)的發(fā)展中起著重要的作用,在現(xiàn)實(shí)世界中也有著廣泛的作用.由此可見(jiàn),勾股定理是對(duì)直角三角形進(jìn)一步的認(rèn)識(shí)和理解,是后續(xù)學(xué)習(xí)的基礎(chǔ)。因此,本節(jié)內(nèi)容在整個(gè)知識(shí)體系中起著重要的作用。

針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課的設(shè)計(jì)思路是引導(dǎo)學(xué)生?做?數(shù)學(xué)”,選用“引導(dǎo)探究式”教學(xué)方法,先由淺入深,由特殊到一般地提出問(wèn)題,接著引導(dǎo)學(xué)生通過(guò)實(shí)驗(yàn)操作,歸納驗(yàn)證,在學(xué)生的自主探究與合作交流中解決問(wèn)題,這樣既遵循了學(xué)生的認(rèn)知規(guī)律,又充分體現(xiàn)了“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人、教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者”的教學(xué)理念.通過(guò)教師引導(dǎo),學(xué)生動(dòng)手、動(dòng)腦,主動(dòng)探索獲取新知,進(jìn)一步理解并運(yùn)用歸納猜想,由特殊到一般,數(shù)形結(jié)合等數(shù)學(xué)思想方法解決問(wèn)題。同時(shí)讓學(xué)生感悟到:學(xué)習(xí)任何知識(shí)的最好方法就是自己去探究。本節(jié)課采用的教學(xué)流程是:創(chuàng)設(shè)情境→激發(fā)興趣→提出問(wèn)題→故事場(chǎng)景→發(fā)現(xiàn)新知→深入探究→網(wǎng)絡(luò)信息 →規(guī)律猜想→數(shù)字驗(yàn)證→拼圖效果→實(shí)踐應(yīng)用 →拓展提高→回顧小結(jié)→整體感知等環(huán)節(jié)共六個(gè)活動(dòng)來(lái)完成教學(xué)任務(wù)的。在這一過(guò)程中,讓學(xué)生經(jīng)歷了知識(shí)的發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想,從而更好地理解勾股定理,應(yīng)用勾股定理,發(fā)展學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)與能力,增強(qiáng)了學(xué)生學(xué)好數(shù)學(xué)的愿望和信心。

本節(jié)課中的學(xué)生對(duì)用地磚鋪成的地面的觀察發(fā)現(xiàn),計(jì)算建立在直角三角形斜邊上的正方形面積,對(duì)直角三角形三邊關(guān)系的發(fā)現(xiàn),自我小結(jié)等,都給學(xué)生提供了充分的表達(dá)和交流的機(jī)會(huì),發(fā)展了語(yǔ)言表達(dá)和概括能力,增強(qiáng)了合作意識(shí)。由展示生活圖片,感受生活中直角三角形的應(yīng)用,引導(dǎo)學(xué)生將生活圖形數(shù)學(xué)化。感受到生活中處處有數(shù)學(xué)。由實(shí)際問(wèn)題:工人師傅要做出一個(gè)直角三角形支架,一般會(huì)怎么做?引導(dǎo)學(xué)生思考:直角三角形的三邊除了我們已知的不等關(guān)系以外,是不是還存在著我們未知的等量關(guān)系呢?調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的學(xué)習(xí)愿望和參與動(dòng)機(jī)。由學(xué)生觀察地磚鋪成的地面,分別以圖中的直角三角形三邊為邊向外作正方形,求出這三個(gè)正方形的面積,尤其計(jì)算建立在直角三角形斜邊上的正方形面積。這樣學(xué)生通過(guò)正方形面積之間的關(guān)系主動(dòng)建立了由形到數(shù),由數(shù)到形的聯(lián)想,同時(shí)也初步感受到對(duì)于直角三角形而言,三邊滿足兩直角邊的平方和等于斜邊的平方。這樣的設(shè)計(jì)有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。得出結(jié)論后,還要引導(dǎo)學(xué)生用符號(hào)語(yǔ)言表示勾股定理,如符號(hào)語(yǔ)言:Rt△ABC中,∠C=90,AC2+BC2= AB2(或a2+b2=c2),因?yàn)閷⑽淖终Z(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言是數(shù)學(xué)學(xué)習(xí)的一項(xiàng)基本能力。其次,介紹“勾,股,弦”的含義,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形;最后介紹古今中外對(duì)勾股定理的研究,這樣可讓學(xué)生更好地體會(huì)勾股定理的豐富內(nèi)涵與文化背景,陶冶情操,豐富自我,從中得到深層次的發(fā)展。

第五篇:勾股定理教學(xué)設(shè)計(jì)

附件2:

《勾股定理》教學(xué)設(shè)計(jì)

課程名稱 授課人 教學(xué)對(duì)象

一、教材分析

這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版八年級(jí)第一章第1節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

二、教學(xué)目標(biāo)及難重點(diǎn)(知識(shí)與技能,方法和過(guò)程,情感態(tài)度與價(jià)值觀)

教學(xué)目標(biāo):

1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過(guò)程,進(jìn)一步發(fā)展學(xué)生的合情推理意識(shí),主動(dòng)探究的習(xí)慣,進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。

2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進(jìn)一步發(fā)展學(xué)生的說(shuō)理和簡(jiǎn)單的推理的意識(shí)及能力。

3、在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法。

教學(xué)重點(diǎn):了解勾股定理的由來(lái),并能用它來(lái)解決一些簡(jiǎn)單的問(wèn)題。教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

三、教學(xué)策略選擇與設(shè)計(jì)

針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問(wèn)題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問(wèn)題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問(wèn)題解決—課堂小結(jié)—布置作業(yè)六部分。《 勾股定理 》

謝謝 八年級(jí)

學(xué)校名稱 科 目

福綿區(qū)新橋鎮(zhèn)初級(jí)中學(xué) 數(shù)學(xué)

課時(shí)安排

1課時(shí)

四、教學(xué)環(huán)境及設(shè)備、資源準(zhǔn)備

教學(xué)環(huán)境:本校的多媒體教室及設(shè)備

學(xué)生準(zhǔn)備:課本及練習(xí)本、紙張,筆、直尺 教師準(zhǔn)備:自制課件

教學(xué)資源:人教版八年級(jí)下冊(cè)數(shù)學(xué)課本 ??

五、教學(xué)過(guò)程 教學(xué)過(guò)程 教師活動(dòng)

學(xué)生活動(dòng)

媒體設(shè)備資源應(yīng)用分析

(一)、創(chuàng)設(shè)情境→激發(fā)興趣 1、2002年在北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì),這就是本屆大會(huì)會(huì)徽的圖案.它象一個(gè)轉(zhuǎn)動(dòng)的風(fēng)車(chē),揮舞著手臂,歡迎來(lái)自世界各國(guó)的數(shù)學(xué)家們.問(wèn): 你見(jiàn)過(guò)這個(gè)圖案嗎?

1、【欣賞圖片】

1)、學(xué)生在輕松活潑的氣氛中欣賞圖片。

2)這個(gè)圖案是我國(guó)漢代的趙爽在用來(lái)證明勾股定理的“趙爽弦圖”加工而來(lái)的。

2、學(xué)生動(dòng)積極參與,體驗(yàn)數(shù)學(xué)活動(dòng)的樂(lè)趣;

1、創(chuàng)設(shè)情境,通過(guò)電腦投影生活中勾股定理的圖片體驗(yàn)數(shù)學(xué)活動(dòng)的樂(lè)趣。

2、創(chuàng)設(shè)情境,讓學(xué)生動(dòng)積極參與,體驗(yàn)數(shù)學(xué)活動(dòng)的樂(lè)趣;通過(guò)觀察、思考、互相討論、交流,表述特征及概念,引導(dǎo)學(xué)生自主探究、學(xué)習(xí),培養(yǎng)觀察能力、合作意識(shí)及語(yǔ)言表述能力,及時(shí)舉例練習(xí),鞏固新知。

3、施展才華,學(xué)生回顧,教師進(jìn)一步學(xué)習(xí)新知的欲望,體現(xiàn)知識(shí)來(lái)源于實(shí)踐又作用于實(shí)踐,利用勾股定理解決相應(yīng)的生活問(wèn)題,體現(xiàn)數(shù)學(xué)的應(yīng)用價(jià)值。

4、教學(xué)中,力求充分體現(xiàn)教學(xué)內(nèi)容的基礎(chǔ)性,教法的靈活性,學(xué)生學(xué)習(xí)的主動(dòng)性,教師教學(xué)的主導(dǎo)性,充分體現(xiàn)學(xué)生是學(xué)習(xí)的主人,教師是教學(xué)活動(dòng)的組織者、引導(dǎo)者和合作者的教育教學(xué)理念。

2、提出問(wèn)題:

創(chuàng)設(shè)這樣一個(gè)情境:人類一直想要弄清楚其他星球上是否存在著“人”,并試圖與“他們”取得聯(lián)系。那么我們?cè)趺礃硬拍芘c“外星人”接觸呢?我國(guó)數(shù)學(xué)家華羅庚曾建議——向宇宙發(fā)射

(二)故事場(chǎng)景→發(fā)現(xiàn)新知

(三)深入探究→網(wǎng)絡(luò)信息 勾股定理的圖形與外星人聯(lián)系。

3、介紹勾股定理,進(jìn)行點(diǎn)題:(1)介紹《周髀算經(jīng)》中西周的商高(公元一千多年前)發(fā)現(xiàn)了勾三股四弦五這個(gè)規(guī)律(2)介紹西方畢達(dá)哥拉斯于公元前582~493時(shí)期發(fā)現(xiàn)了勾股定理;

有五種求解直角三角形的方法,積求勾股法是其獨(dú)創(chuàng);(4)對(duì)比以上事實(shí)對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育,激勵(lì)他們奮發(fā)向上

4、出示課件

(1)等腰直角三角形有上述性質(zhì),其它的直角三角形是否也具有這個(gè)性質(zhì)呢?怎樣探索“其它”的直角三角形的三邊關(guān)系呢?

(2)你是如何計(jì)算那個(gè)建立在直角三角形斜邊上的正方形面積的?

(3)計(jì)算各正方形面積并驗(yàn)證這個(gè)直角三角形的三邊存在的關(guān)系。

5、出示課件

驗(yàn)證猜想;對(duì)于兩條直角邊分別為3,5的直角三角形,它的三邊上的正方形也存在相類似的面

歸納得到:兩條直角邊上的正方形的面積之和等于斜邊上的正方形的面積.要求學(xué)生畫(huà)一個(gè)兩直角邊分別為2,3(根據(jù)定義法輔用以直尺)建立正方形。

4、學(xué)生討論交流,由上面探究我們可以猜想:

命題1在直角三角形中,兩直角邊的平方和等于斜邊的平方。

如果是其它的一般直角三角形,是否也具備這一結(jié)論呢?于是投影圖1-3,1-4,同樣讓學(xué)生計(jì)算正方形的3、欣賞圖片,分析思考,練習(xí)鞏固。歸納起到啟后作用,激發(fā)學(xué)生

(四)規(guī)律猜想→直達(dá)快車(chē)

(五)實(shí)踐應(yīng)用→拓展提高(3)康熙數(shù)學(xué)專著《勾股圖解》的直角三角形,并以它的三邊為邊長(zhǎng)

面積,但正方形C的面積不易求出,可先讓學(xué)生思考、小組合作再利用計(jì)算機(jī)演示處理過(guò)程(割補(bǔ)法)。

5、這樣設(shè)計(jì)不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生體會(huì)到觀察、猜想、歸納的思路,也讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在5、在這一過(guò)程中,讓學(xué)生經(jīng)歷了知識(shí)的發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想,從而更好地理解勾股定理,應(yīng)用勾股定理,發(fā)

六、課堂小結(jié)及作業(yè)布置 積關(guān)系嗎?

6、問(wèn)題:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高h(yuǎn)=3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離x=2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?

無(wú)形中得到提高,這對(duì)以后的學(xué)習(xí)有幫助.6、學(xué)生歸納小結(jié),教師做適當(dāng)?shù)难a(bǔ)充。

展學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)與能力,增強(qiáng)了學(xué)生學(xué)好數(shù)學(xué)的愿望和信心。

六、教學(xué)評(píng)價(jià)設(shè)計(jì)

本節(jié)課中的學(xué)生對(duì)用地磚鋪成的地面的觀察發(fā)現(xiàn),計(jì)算建立在直角三角形斜邊上的正方形面積,對(duì)直角三角形三邊關(guān)系的發(fā)現(xiàn),自我小結(jié)等,都給學(xué)生提供了充分的表達(dá)和交流的機(jī)會(huì),發(fā)展了語(yǔ)言表達(dá)和概括能力,增強(qiáng)了合作意識(shí)。由展示生活圖片,感受生活中直角三角形的應(yīng)用,引導(dǎo)學(xué)生將生活圖形數(shù)學(xué)化。感受到生活中處處有數(shù)學(xué)。由實(shí)際問(wèn)題:工人師傅要做出一個(gè)直角三角形支架,一般會(huì)怎么做?引導(dǎo)學(xué)生思考:直角三角形的三邊除了我們已知的不等關(guān)系以外,是不是還存在著我們未知的等量關(guān)系呢?調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的學(xué)習(xí)愿望和參與動(dòng)機(jī)。由學(xué)生觀察地磚鋪成的地面,分別以圖中的直角三角形三邊為邊向外作正方形,求出這三個(gè)正方形的面積,尤其計(jì)算建立在直角三角形斜邊上的正方形面積。這樣學(xué)生通過(guò)正方形面積之間的關(guān)系主動(dòng)建立了由形到數(shù),由數(shù)到形的聯(lián)想,同時(shí)也初步感受到對(duì)于直角三角形而言,三邊滿足兩直角邊的平方和等于斜邊的平方。這樣的設(shè)計(jì)有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。得出結(jié)論后,還要引導(dǎo)學(xué)生用符號(hào)語(yǔ)言表示勾股定理,如符號(hào)語(yǔ)言:Rt△ABC中,∠C=90,AC2+BC2= AB2(或a2+b2=c2),因?yàn)閷⑽淖终Z(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言是數(shù)學(xué)學(xué)習(xí)的一項(xiàng)基本能力。其次,介紹“勾,股,弦”的含義,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形;最后介紹古今中外對(duì)勾股定理的研究,這樣可讓學(xué)生更好地體會(huì)勾股定理的豐富內(nèi)涵與文化背景,陶冶情操,豐富自我,從中得到深層次的發(fā)展。

七、課后反思

本節(jié)課采用的教學(xué)流程是:創(chuàng)設(shè)情境→激發(fā)興趣→提出問(wèn)題→故事場(chǎng)景→發(fā)現(xiàn)新知→深入探究→網(wǎng)絡(luò)信息 →規(guī)律猜想→數(shù)字驗(yàn)證→拼圖效果→實(shí)踐應(yīng)用 →拓展提高→回顧小結(jié)→整體感知等環(huán)節(jié)共六個(gè)活動(dòng)來(lái)完成教學(xué)任務(wù)的。在這一過(guò)程中,讓學(xué)生經(jīng)歷了知識(shí)的發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想,從而更好地理解勾股定理,應(yīng)用勾股定理,發(fā)展學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)與能力,增強(qiáng)了學(xué)生學(xué)好數(shù)學(xué)的愿望和信心。本節(jié)課中的學(xué)生對(duì)用地磚鋪成的地面的觀察發(fā)現(xiàn),計(jì)算建立在直角三角形斜邊上的正方形面積,對(duì)直角三角形三邊關(guān)系的發(fā)現(xiàn),自我小結(jié)等,都給學(xué)生提供了充分的表達(dá)和交流的機(jī)會(huì),發(fā)展了語(yǔ)言表達(dá)和概括能力,增強(qiáng)了合作意識(shí)。由展示生活圖片,感受生活中直角三角形的應(yīng)用,引導(dǎo)學(xué)生將生活圖形數(shù)學(xué)化。感受到生活中處處有數(shù)學(xué)。

下載數(shù)學(xué)勾股定理教學(xué)設(shè)計(jì)2(合集五篇)word格式文檔
下載數(shù)學(xué)勾股定理教學(xué)設(shè)計(jì)2(合集五篇).doc
將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    勾股定理教學(xué)設(shè)計(jì)

    《勾股定理》教學(xué)設(shè)計(jì) 泰來(lái)縣江橋鎮(zhèn)中心學(xué)校 潘艷梅 教學(xué)目標(biāo) 一、知識(shí)技能 1.了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過(guò)程. 2.掌握直角三角形中的三邊關(guān)系和三角之間......

    勾股定理教學(xué)設(shè)計(jì)

    勾股定理教學(xué)設(shè)計(jì) 學(xué)情分析 勾股定理揭示了直角三角形三邊之間的一種美妙關(guān)系,將形與數(shù)密切聯(lián)系起來(lái),在數(shù)學(xué)的發(fā)展和現(xiàn)實(shí)世界中有著廣泛的作用。本節(jié)是直角三角形相關(guān)知識(shí)的......

    勾股定理教學(xué)設(shè)計(jì)(定稿)

    《勾股定理》教學(xué)設(shè)計(jì) 長(zhǎng)春市第六十九中學(xué) 徐明國(guó) 這節(jié)課所用的教材是華東師大版本《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)》,這節(jié)課講授的是第十四章《勾股定理》第一節(jié)的內(nèi)容。勾股......

    《勾股定理》教學(xué)設(shè)計(jì)

    《勾股定理》教學(xué)設(shè)計(jì) 這節(jié)課是人教版《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)》八年級(jí)(下)教材第十八章《勾股定理》第一節(jié)的內(nèi)容。勾股定理的內(nèi)容是全章內(nèi)容的重點(diǎn)、難點(diǎn),它的地位作用......

    勾股定理教學(xué)設(shè)計(jì)

    《勾股定理》教學(xué)設(shè)計(jì) 古敢水族鄉(xiāng)中學(xué):徐祥林 教學(xué)目標(biāo) : 1、知識(shí)目標(biāo): (1)掌握; (2)學(xué)會(huì)利用進(jìn)行計(jì)算、證明與作圖; (3)了解有關(guān)的歷史. 2、能力目標(biāo): (1)在定理的證明中培養(yǎng)學(xué)生的拼圖能......

    勾股定理教學(xué)設(shè)計(jì)

    勾股定理教學(xué)設(shè)計(jì) 教材分析: 勾股定理是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)八年級(jí)下冊(cè)第十章七的內(nèi)容。勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量......

    《勾股定理》教學(xué)設(shè)計(jì)

    《勾股定理》教學(xué)設(shè)計(jì) 一、內(nèi)容和內(nèi)容解析 本節(jié)課為人教版八年級(jí)數(shù)學(xué)下冊(cè)第十八章第一節(jié),教材64頁(yè)至66頁(yè)(不含探究1)的內(nèi)容。其內(nèi)容包括章前對(duì)勾股定理整章的引入:2002年北京召......

    勾股定理教學(xué)設(shè)計(jì)

    勾股定理教學(xué)設(shè)計(jì) 遷安市體育運(yùn)動(dòng)學(xué)校 王蘭秋 課標(biāo)分析:需掌握的知識(shí)點(diǎn):勾股定理的內(nèi)容及應(yīng)用;判斷一個(gè)三角形是直角三角形的條件;通過(guò)學(xué)習(xí),在對(duì)勾股定理的探索和驗(yàn)證過(guò)程中體會(huì)......

主站蜘蛛池模板: 无码性午夜视频在线观看| 国产精品极品在线视频| 久久精品一品道久久精品| 亚洲欧美韩国综合色| 蜜桃mv在线播放免费观看视频| 纯爱无遮挡h肉动漫在线播放| 偷窥国产亚洲免费视频| 亚洲一区二区三区四区五区六| 欧美大波少妇在厨房被| 五十路熟女一区二区三区| av无码动漫一区二区三区精品| 精品无码一区二区三区爱欲九九| 精品亚洲韩国一区二区三区| 天天爽天天爽夜夜爽毛片| 就去干成人网| 久拍国产在线观看| 免费国产拍久久受拍久久| 裸身美女无遮挡永久免费视频| 国内精品国产三级国产av| 中文字幕无线码| 无码一区二区三区免费| 欧美亚洲日本国产黑白配| 男女肉粗暴进来120秒动态图| 天天综合天天爱天天做| 免费人成年激情视频在线观看| 精品一区二区三区在线观看视频| 国产69精品久久久久app下载| 免费观看性欧美大片无片| 97人人澡| 欧美性性性性性色大片免费的| 又大又粗又爽的少妇免费视频| 亚洲午夜成人久久久久久| 欧美激情综合亚洲一二区| 亚洲一区二区三区四区五区六| 99成人国产综合久久精品| 偷窥xxxx盗摄国产| 日本熟妇美熟bbw| 久久永久免费专区人妻精品| 老司机亚洲精品影院无码| 国产精品宾馆在线精品酒店| 夫妇交换性三中文字幕|