第一篇:2010年全國高考數學幾何證明題答案
2010年全國高考數學幾何證明題
1.(北京卷理12)如圖,⊙O的弦ED,CB的延長線交于點A.若BD⊥AE,AB=4, BC=2, AD=3,則DE=_______;CE=_______.【答案】
5;解析:首先由割線定理不難知道AB·AC=AD·AE,于是AE=8,DE=5,又BD⊥AE,故∠C=90°.由勾股定理可知,CE?AE?AC?
28,故CE?
2.(廣東卷理14)如圖3,AB,CD是半徑為a的圓O的兩條弦,它們相交于AB的中點P,PDOAP=30°,則CP=______.【答案】
98a
?2a
3,∠
解析:因為點P是AB的中點,由垂徑定理知, OP⊥AB.在Rt△OPA中,BP?AP?acos30?BP·AP=CP·DP,即
a?
a?CP?
a,由相交線定理知,98
a,所以CP?
a.3.(廣東卷文14)如圖3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,點E,F分別為線段AB,AD的中點,則EF=__________.2a
【答案】
a
解析: 結DE,可知△DEA為直角三角形,EF為Rt△DEA斜邊AD上的中線,所以EF等于AD的一半.4.(湖南卷理10)如圖1所示,過⊙O外一點P作一條
直線與⊙O交于A,B兩點,已知PA=2,點P到⊙O的切線長PT =4,則弦AB的長為________.【答案】6
解析:根據切線長定理 PT所以AB=PB-PA=8-2=6
?PA?PB,?PB?
PT
PA
?
162
?8
5.(湖北卷理15)設a>0,b>0,稱2ab/a+b為a,b的調和平均數.如圖,C為線段AB上的點,且AC=a,CB=b,O為AB中點,以AB為直徑做半圓.過點C作AB的垂線交半圓于D,連結OD,AD,BD.過點C作OD的垂線,垂足為E.則圖中線段OD的長度是a,b的算術平均數,線段________的長度是a,b的幾何平均數,線段 _______的長度是a,b的調和平均數.【答案】CDDE
解析:(1)Rt△ADB中DC為高,則由射影定理可得:
CD=
AC?BC?ab故CD?
a、b的幾何平均數.?
(2)
2ab
a?b
?
AC?BCAB
2?
CD
OD
?DE,故DE為a、b的調和平均數.6.(陜西卷理15B)如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則BD/DA= _________.【答案】
169
解析:連CD,易知CD是Rt△ABC斜邊上的高,∴由射影定理得,BC2=BD·AB,AC2=AD·AB.故所求
BDDA
?
BD?ABDA?AB
?
BCAC
2?
4322
?
169
.7.(陜西卷文15B)如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則BD=___cm.【答案】
5?5,又由切割線定理得BC 2 =BD·AB,解析:
∵易知AB?
∴ 42 =BD·5?BD?
165
8.(天津卷理14)如圖,四邊形ABCD是圓O的內接四邊形,延長AB和DC相交于點P,若PB/PA=1/2,PC/PD=1/3,則BC/AD的值為
________.【答案】
6解析:因為ABCD四點共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因為∠P為公共角,所以△PBC∽△PDA,所以
PBPD
?PCPA
?BCAD,設PC=x,PB=y,3y
則PD=3x,PA=2y,由所以
y3x
?
x2y
6,得x?.,BCAD
?
PCPA
?
x2y
?
9.(天津卷文11)如圖,四邊形ABCD是圓O的內接四邊形,延長AB和DC相交于點P.若PB=1,PD=3,則BC/AD的值為___________.【答案】
1【解析】因為ABCD四點共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因為∠P為公共角,所以△PBC∽△PDA,所以
BCAD
?
PBPD
?
10.(江蘇卷21①)AB是⊙O的直徑,D為⊙O上一點,過點D作⊙O的切線交AB延長線于C,若DA=DC,求證:AB=2BC解析 :
(方法一)證明:連結OD,則:OD⊥DC,又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO,∠DOC=∠DAO+∠ODA=2∠DCO,所以∠DCO=30 o,∠DOC=60 o,所以OC=2OD,即OB=BC=OD=OA,所以AB=2BC.(方法二)證明:連結OD、BD.因為AB是圓O的直徑,所以∠ADB=90o,AB=2 OB.因為DC 是圓O的切線,所以∠CDO=90o.又因為DA=DC,所以∠DAC=∠DCA,于是△ADB≌△CDO,從而AB=CO.即2OB=OB+BC,得OB=BC.故AB=2BC.11.(遼寧卷理22)如圖,?ABC的角平分線AD的延長線交它的外接圓于點E
(I)證明: ?ABE??ADC.(II)若?ABC的面積S?
AD?AE,求∠BAC的大小.證明(Ⅰ)∵∠EAB=∠CAD, ∠BEA=∠ACD∴?ABE??ADC.解(Ⅱ)??ABE??ADC?
?S?
ABAD
?,即AB?AC?AD?AE
ACAE
AB?ACsin?BAC?
AD?AEsin?BAC?
AD?AE
?sin?BAC?1??BAC?90(三角形內角)
12.(全國Ⅰ新卷理22文22)如圖:已知圓上
?,過C點的圓的切線與BA的延長線交于 E點,證明:AC?BD的弧?
(Ⅰ)?ACE??BCD(Ⅱ)BC?CD?BE
?, AC?BD解:(I)∵?
∴∠BCD=∠ABC.(易知四邊形
ACDB是等腰梯形)
又∵EC與圓相切于點C,故∠ACE=∠ABC,∴∠ACE=∠BCD.(II)∵∠CAE=∠BDC, ∠CEA=∠ABC+∠ACB=∠ACE+ACB=∠BCE
∴∠BDC=∠BCE,而∠BCD=∠BCE ∴△BCD∽△BCE ?
BCBE
?CDBC
?BC
?CD?BE
第二篇:2010年全國高考數學幾何證明題
2010年全國高考數學幾何證明題
1.(北京卷理12)如圖,⊙O的弦ED,CB的 延長線交于點A.若BD⊥AE,AB=4, BC=2,AD=3,則DE=_______;CE=_______.2.(廣東卷理14)如圖3,AB,CD是半徑為 a的圓O的兩條弦,它們相交于AB的中點P,PD?2a
3,∠OAP=30°,則CP=______.3.(廣東卷文14)如圖3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD?a
2,點E,F
分別為線段AB,AD的中點,則EF=__________.4.(湖南卷理10)如圖1所示,過⊙O外一點P 作一條直線與⊙O交于A,B兩點,已知PA=2,點P到⊙O的切線長PT =4,則弦AB的長為________.5.(湖北卷理15)設a>0,b>0,稱2ab/a+b a,b的調和平均數.如圖,C為線段AB上的點,且AC=a,CB=b,O為AB中點,以AB為直徑做 半圓.過點C作AB的垂線交半圓于D,連結OD,AD,BD.過點C作OD的垂線,垂足為E.則圖
中線段OD的長度是a,b的算術平均數,線段________的長度是a,b的幾何平均數,線段 _______的長度是a,b的調和平均數.6.(陜西卷理15B)如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則BD/DA= _____.7.(陜西卷文15B)如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以
AC為直徑的圓與AB交于點D,則BD=______cm.8.(天津卷理14)如圖,四邊形ABCD是
圓O的內接四邊形,延長AB和DC相交于
點P,若PB/PA=1/2,PC/PD=1/3,則BC/AD的值為 ____.9.(天津卷文11)如圖,四邊形ABCD是圓O的內接四邊形,延長AB和DC相交于點P。若
PB=1,PD=3,則BC/AD的值為___________.10.(江蘇卷21①)AB是⊙O的直徑,D為⊙O上一點,過點D作⊙O的切線
交AB延長線于C,若DA=DC,求證:AB=2BC
11.(遼寧卷理22)如圖,?ABC的角平分線AD的延長線交它的外接圓于點E
(I)證明: ?ABE??ADC.(II)若?ABC的面積S?
12.(全國Ⅰ新卷理22文22)如圖:已知圓上的?,過C點的圓的切線與BA的延長線交 AC?BD弧?12AD?AE,求∠BAC的大小.于 E點,證明:
(Ⅰ)?ACE??BCD
2(Ⅱ)BC?CD?BE
第三篇:初一幾何證明題答案
初一幾何證明題答案
圖片發不上來,看參考資料里的1如圖,AB⊥BC于B,EF⊥AC于G,DF⊥AC于D,BC=DF。求證:AC=EF。
2已知AC平分角BAD,CE垂直AB于E,CF垂直AD于F,且BC=CD
(1)求證:△BCE全等△DCF
3.如圖所示,過三角形ABC的頂點A分別作兩底角角B和角C的平分線的垂線,AD垂直于BD于D,AE垂直于CE于E,求證:ED||BC.4.已知,如圖,pB、pC分別是△ABC的外角平分線,且相交于點p。
求證:點p在∠A的平分線上。
回答人的補充2010-07-1900:101.在三角形ABC中,角ABC為60度,AD、CE分別平分角BAC角ACB,試猜想,AC、AE、CD有怎么樣的數量關系
2.把等邊三角形每邊三等分,經其向外長出一個邊長為原來三分之一的小等邊三角形,稱為一次生長,如生長三次,得到的多邊形面積是原三角形面積的幾倍
求證:同一三角形的重心、垂心、三條邊的中垂線的交點三點共線。(這條線叫歐拉線)求證:同一三角形的三邊的中點、三垂線的垂足、各頂點到垂心的線段的中點這9點共圓。~~(這個圓叫九點圓)
3.證明:對于任意三角形,一定存在兩邊a、b,滿足a比b大于等于1,小于2分之根5加
14.已知△ABC的三條高交于垂心O,其中AB=a,AC=b,∠BAC=α。請用只含a、b、α三個字母的式子表示AO的長(三個字母不一定全部用完,但一定不能用其它字母)。
5.設所求直線為y=kx+b(k,b為常數.k不等于0).則其必過x-y+2=0與x+2y-1=0的交點(-1,1).所以b=k+1,即所求直線為y=kx+k+1(1)過直線x-y+2=0與Y軸的交點(0,2)且垂直于x-y+2=0的直線為y=-x+2(2).直線(2)與直線(1)的交點為A,直線(2)與直線x+2y-1=0的交點為B,則AB的中點為(0,2),由線段中點公式可求k.6.在三角形ABC中,角ABC=60,點p是三角ABC內的一點,使得角ApB=角BpC=角CpA,且pA=8pC=6則pB=2p是矩形ABCD內一點,pA=3pB=4pC=5則pD=3三角形ABC是等腰直角三角形,角C=90O是三角形內一點,O點到三角形各邊的距離都等于1,將三角形ABC饒點O順時針旋轉45度得三角形A1B1C1兩三角形的公共部分為多邊形KLMNpQ,1)證明:三角形AKL三角形BMN三角形CpQ都是等腰直角三角形2)求三角形ABC與三角形A1B1C1公共部分的面積。
已知三角形ABC,a,b,c分別為三邊.求證:三角形三邊的平方和大于等于16倍的根號3(即:a2+b2+c2大于等于16倍的根號3)
初一幾何單元練習題
一.選擇題
1.如果α和β是同旁內角,且α=55°,則β等于()
(A)55°(B)125°(C)55°或125°(D)無法確定
2.如圖19-2-(2)
AB‖CD若∠2是∠1的2倍,則∠2等于()
(A)60°(B)90°(C)120°(D)150
3.如圖19-2-(3)
∠1+∠2=180°,∠3=110°,則∠4度數()
(A)等于∠1(B)110°
(C)70°(D)不能確定
4.如圖19-2-(3)
∠1+∠2=180°,∠3=110°,則∠1的度數是()
(A)70°(B)110°
(C)180°-∠2(D)以上都不對
5.如圖19-2(5),已知∠1=∠2,若要使∠3=∠4,則需()
(A)∠1=∠2(B)∠2=∠
3(C)∠1=∠4(D)AB‖CD
6.如圖19-2-(6),AB‖CD,∠1=∠B,∠2=∠D,則∠BED為()
(A)銳角(B)直角
(C)鈍角(D)無法確定
7.若兩個角的一邊在同一條直線上,另一邊相互平行,那么這兩個角的關系是()
(A)相等(B)互補(C)相等且互補(D)相等或互補
8.如圖19-2-(8)AB‖CD,∠α=()
(A)50°(B)80°(C)85°
答案:1.D2.C3.C4.C5.D6.B7.D8.B
初一幾何第二學期期末試題
1.兩個角的和與這兩角的差互補,則這兩個角()
A.一個是銳角,一個是鈍角B.都是鈍角
C.都是直角D.必有一個直角
2.如果∠1和∠2是鄰補角,且∠1>∠2,那么∠2的余角是()
3.下列說法正確的是()
A.一條直線的垂線有且只有一條
B.過射線端點與射線垂直的直線只有一條
C.如果兩個角互為補角,那么這兩個角一定是鄰補角
D.過直線外和直線上的兩個已知點,做已知直線的垂線
4.在同一平面內,兩條不重合直線的位置關系可能有()
A.平行或相交B.垂直或平行
C.垂直或相交D.平行、垂直或相交
5.不相鄰的兩個直角,如果它們有一條公共邊,那么另一邊互相()
A.平行B.垂直
C.在同一條直線上D.或平行、或垂直、或在同一條直線上
答案:1.D2.C3.B4.A5.A回答人的補充2010-07-1900:211.如圖所示,一只老鼠沿著長方形逃跑,一只花貓同時從A點朝另一個方向沿著長方形去捕捉,結果在距B點30cm的C點處捉住了老鼠。已知老鼠與貓的速度之比為11:14,求長方形的周長。設周長為X.則A到B的距離為X/2;X/2-30:X/2+30=11:14X=500cm如圖,梯形ABCD中,AD平行BC,∠A=2∠C,AD=10cm,BC=25cm,求AB的長解:過點A作AB‖DE。∵AB‖DE,AD‖BC∴四邊形ADEB是平信四邊形∴AB=DE,AD=BE∵∠DEB是三角形DEC的外角∴∠DEB=∠CDE+∠C∵四邊形ADEB是平信四邊形∴∠A=∠DEB又∵∠A=2∠C,∠DEB=∠CDE+∠C∴∠CDE+∠C∴DE=CE∵AD=10,BC=25,AD=BE∴CE=15=DE=AB如圖:等腰三角形ABCD中,AD平行BC,BD⊥DC,且∠1=∠2,梯形的周長為30CM,求AB、BC的長。因為等腰梯形ABCD,所以角ABC=角C,AB=CD,AD//BC所以角ADB=角2,又角1=角2,所以角1=角2=角ADB,而角ABC=角C=角1+角2且角2=角ADB所以角ADB+角C=90度,所以有角1+角2+角ADB=90度所以角2=30度因此BC=2CD=2AB所以周長為5AB=30所以AB=6,BC=12回答人的補充2010-07-0311:25如圖:正方形ABCD的邊長為4,G、F分別在DC、CB邊上,DG=GC=2,CF=1.求證:∠1=∠2(要兩種解法提示一種思路:連接并延長FG交AD的延長線于K)
1.連接并延長FG交AD的延長線于K∠KGD=∠FGC∠GDK=∠GCFBG=CG△CGF≌△DGKGF=GKAB=4BF=3AF=5AB=4+1=5AB=AFAG=AG△AGF≌△AGK∠1=∠
22.延長AC交BC延長線與E∠ADG=∠ECG∠AGD=∠EGCDG=GC△ADG≌△EGF∠1=∠EAD=CEAF=5EF=1+4=5∠2=∠E所以∠1=∠2如圖,四邊形ABCD是平行四邊形,BE平行DF,分別交AC于E、F連接ED、BF求證∠1=∠2
答案:證三角形BFE全等三角形DEF。因為FE=EF,角BEF=90度=角DFE,DF=BE(全等三角形的對應高相等)。所以三角形BFE全等三角形DEF。所以∠1等于∠2(全等三角形對應角相等)
就給這么多吧~~N累~!回答人的補充2010-07-1900:341已知ΔABC,AD是BC邊上的中線。E在AB邊上,ED平分∠ADB。F在AC邊上,FD平分∠ADC。求證:BE+CF>EF。
2已知ΔABC,BD是AC邊上的高,CE是AB邊上的高。F在BD上,BF=AC。G在CE延長線上,CG=AB。求證:AG=AF,AG⊥AF。
3已知ΔABC,AD是BC邊上的高,AD=BD,CE是AB邊上的高。AD交CE于H,連接BH。求證:BH=AC,BH⊥AC。
4已知ΔABC,AD是BC邊上的中線,AB=2,AC=4,求AD的取值范圍。
5已知ΔABC,AB>AC,AD是角平分線,p是AD上任意一點。求證:AB-AC>pB-pC。
6已知ΔABC,AB>AC,AE是外角平分線,p是AE上任意一點。求證:pB+pC>AB+AC。
7已知ΔABC,AB>AC,AD是角平分線。求證:BD>DC。
8已知ΔABD是直角三角形,AB=AD。ΔACE是直角三角形,AC=AE。連接CD,BE。求證:CD=BE,CD⊥BE。
9已知ΔABC,D是AB中點,E是AC中點,連接DE。求證:DE‖BC,2DE=BC。
10已知ΔABC是直角三角形,AB=AC。過A作直線AN,BD⊥AN于D,CE⊥AN于E。求證:DE=BD-CE。
等形2
1已知四邊形ABCD,AB=BC,AB⊥BC,DC⊥BC。E在BC邊上,BE=CD。AE交BD于F。求證:AE⊥BD。
2已知ΔABC,AB>AC,BD是AC邊上的中線,CE⊥BD于E,AF⊥BD延長線于F。求證:BE+BF=2BD。
3已知四邊形ABCD,AB‖CD,E在BC上,AE平分∠BAD,DE平分∠ADC,若AB=2,CD=3,求AD。
4已知ΔABC是直角三角形,AC=BC,BE是角平分線,AF⊥BE延長線于F。求證:BE=2AF。
5已知ΔABC,∠ACB=90°,AD是角平分線,CE是AB邊上的高,CE交AD于F,FG‖AB交BC于G。求證:CD=BG。
6已知ΔABC,∠ACB=90°,AD是角平分線,CE是AB邊上的高,CE交AD于F,FG‖BC交AB于G。求證:AC=AG。
7已知四邊形ABCD,AB‖CD,∠D=2∠B,若AD=m,DC=n,求AB。
8已知ΔABC,AC=BC,CD是角平分線,M為CD上一點,AM交BC于E,BM交AC于F。求證:ΔCME≌ΔCMF,AE=BF。
9已知ΔABC,AC=2AB,∠A=2∠C,求證:AB⊥BC。
10已知ΔABC,∠B=60°。AD,CE是角平分線,求證:AE+CD=AC
全等形4
1已知ΔABC是直角三角形,AB=AC,ΔADE是直角三角形,AD=AE,連接CD,BE,M是BE中點,求證:AM⊥CD。
2已知ΔABC,AD,BE是高,AD交BE于H,且BH=AC,求∠ABC。
3已知∠AOB,p為角平分線上一點,pC⊥OA于C,∠OAp+∠OBp=180°,求證:AO+BO=2CO。
4已知ΔABC是直角三角形,AB=AC,M是AC中點,AD⊥BM于D,延長AD交BC于E,連接EM,求證:∠AMB=∠EMC。
5已知ΔABC,AD是角平分線,DE⊥AB于E,DF⊥AC于F,求證:AD⊥EF。
6已知ΔABC,∠B=90°,AD是角平分線,DE⊥AC于E,F在AB上,BF=CE,求證:DF=DC。
7已知ΔABC,∠A與∠C的外角平分線交于p,連接pB,求證:pB平分∠B。
8已知ΔABC,到三邊AB,BC,CA的距離相等的點有幾個?
9已知四邊形ABCD,AD‖BC,AD⊥DC,E為CD中點,連接AE,AE平分∠BAD,求證:AD+BC=AB。
10已知ΔABC,AD是角平分線,BE⊥AD于E,過E作AC的平行線,交AB于F,求證:∠FBE=∠FEB。
第四篇:初中數學幾何證明題
初中數學幾何證明題
分析已知、求證與圖形,探索證明的思路。
對于證明題,有三種思考方式:
(1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問題。運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。這種方法是推薦學生一定要掌握的。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯,數學這門學科知識點很少,關鍵是怎樣運用,對于初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經上初三了,幾何學的不好,做題沒有思路,那你一定要注意了:從現在開始,總結做題方法。同學們認真讀完一道題的題干后,不知道從何入手,建議你從結論出發。例如:可以有這樣的思考過程:要證明某兩條邊相等,那么結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什么條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過程正著寫出來就可以了。這是非常好用的方法,同學們一定要試一試。
(3)正逆結合。對于從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。
幾何證明題入門難,證明題難做,是許多初中生在學習中的共識,這里面有很多因素,有主觀的、也有客觀的,學習不得法,沒有適當的解題思路則是其中的一個重要原因。掌握證明題的一般思路、探討證題過程中的數學思維、總結證題的基本規律是求解幾何證明題的關鍵。在這里結合自己的教學經驗,談談自己的一些方法與大家一起分享。
一要審題。很多學生在把一個題目讀完后,還沒有弄清楚題目講的是什么意思,題目讓你求證的是什么都不知道,這非常不可齲我們應該逐個條件的讀,給的條件有什么用,在腦海中打個問號,再對應圖形來對號入座,結論從什么地方入手去尋找,也在圖中找到位置。
二要記。這里的記有兩層意思。第一層意思是要標記,在讀題的時候每個條件,你要在所給的圖形中標記出來。如給出對邊相等,就用邊相等的符號來表示。第二層意思是要牢記,題目給出的條件不僅要標記,還要記在腦海中,做到不看題,就可以把題目復述出來。
三要引申。難度大一點的題目往往把一些條件隱藏起來,所以我們要會引申,那么這里的引申就需要平時的積累,平時在課堂上學的基本知識點掌握牢固,平時訓練的一些特殊圖形要熟記,在審題與記的時候要想到由這些條件你還可以得到哪些結論(就像電腦一下,你一點擊開始立刻彈出對應的菜單),然后在圖形旁邊標注,雖然有些條件在證明時可能用不上,但是這樣長期的積累,便于以后難題的學習。
四要分析綜合法。分析綜合法也就是要逆向推理,從題目要你證明的結論出發往回推理。看看結論是要證明角相等,還是邊相等,等等,如證明角相等的方法有(1.對頂角相等2.平行線里同位角相等、內錯角相等3.余角、補角定理4.角平分線定義5.等腰三角形6.全等三角形的對應角等等方法。然后結合題意選出其中的一種方法,然后再考慮用這種方法證明還缺少哪些條件,把題目轉換成證明其他的結論,通常缺少的條件會在第三步引申出的條件和題目中出現,這時再把這些條件綜合在一起,很條理的寫出證明過程。
五要歸納總結。很多同學把一個題做出來,長長的松了一口氣,接下來去做其他的,這個也是不可取的,應該花上幾分鐘的時間,回過頭來找找所用的定理、公理、定義,重新審視這個題,總結這個題的解題思路,往后出現同樣類型的題該怎樣入手。
第五篇:中考數學幾何證明題
中考數學幾何證明題
在?ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(如圖2),直接寫出∠BDG的度數;
第一個問我會,求第二個問。需要過程,快呀!
連接GC、BG
∵四邊形ABCD為平行四邊形,∠ABC=90°
∴四邊形ABCD為矩形
∵AF平分∠BAD
∴∠DAF=∠BAF=45°
∵∠DCB=90°,DF∥AB
∴∠DFA=45°,∠ECF=90°
∴△ECF為等腰Rt△
∵G為EF中點
∴EG=CG=FG
∵△ABE為等腰Rt△,AB=DC
∴BE=DC
∵∠CEF=∠GCF=45°→∠BEG=∠DCG=135°
∴△BEG≌△DCG
∴BG=DG
∵CG⊥EF→∠DGC+∠DGB=90°
又∵∠DGC=∠BGE
∴∠BGE+∠DGB=90°
∴△DGB為等腰Rt△
∴∠BDG=45°
分析已知、求證與圖形,探索證明的思路。
對于證明題,有三種思考方式:
(1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問題。運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。這種方法是推薦學生一定要掌握的。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯,數學這門學科知識點很少,關鍵是怎樣運用,對于初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經上初三了,幾何學的不好,做題沒有思路,那你一定要注意了:從現在開始,總結做題方法。同學們認真讀完一道題的題干后,不知道從何入手,建議你從結論出發。例如:可以有這樣的思考過程:要證明某兩條邊相等,那么結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什么條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過程正著寫出來就可以了。這是非常好用的方法,同學們一定要試一試。
(3)正逆結合。對于從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。