久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

分數的基本性質教學設計

2024-05-11下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了這篇《分數的基本性質教學設計》及擴展資料,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《分數的基本性質教學設計》。

分數的基本性質教學設計

分數的基本性質教學設計 1

一、教學目標:

1、讓學生經歷分數基本性質的探究過程,理解和掌握分數的基本性質,初步建立數學模型。

2、利用分數的基本性質把一個分數化為指定分母(或分子)而大小不變的分數。

3、培養學生的觀察、概括等思維能力及(滲透變與不變)數學學習興趣。

二、教學重點:

理解掌握分數的基本性質,它是約分,通分的依據

三、教學難點:

理解和掌握分數的基本性質,初步建立數學模型。

四、教學準備:

課件、正方形的紙。

五、教學設計過程:

(一)遷移舊知.提出猜想

1、回憶舊知

猜信封:老師手上的信封里有一個數、一道算式,我抽出其中一張 ,誰能猜出另一張是什么?出示: 2÷3

你為什么這樣猜呢?引導學生回憶分數與除法的關系。媒體演示:分數與除法的關系:

被除數÷除數=

誰能說一道與2÷3商一樣的除法算式?學生一邊說,教師一邊板書算式。你為什么認為這些算式的'商是一樣的?引導學生回憶什么是商不變的性質?媒體出示:商不變的性質:

被除數和除數同時乘或除以相同的數(零除外),商不變。

2、提出猜想:

既然分數與除法的關系這么緊密.除法有商不變性質,那分數是否也會有這樣的性質,請大家大膽猜想一下。(學生可能根據商不變性質推導出分數的基本性質,學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。)

(二)驗證猜想,建構新知

A、看圖分類

下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數,并把相同的分數分在一起。

B、討論方法

師:你是怎么判斷它們相等的?

師:它們相等,用算式可以怎么表示?

1/2 = 2/4 = 4/8

C、研究規律

師:這些相等的式子,除了我們從圖上看到的大小相等之外,還有沒有其他的秘密呢?

利用研究卡進行研究。

確定的研究對象

分子和分母同時乘上或者

除以一個相同的數

得到的分數

研究對象與得到的分數相等嗎?

相等( )不相等( )

猜想是否成立?

成立( )不成立( )

充分利用學生的生成資源:揭示課題:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。(板書)

師:為什么要0除外?

師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)

練習:2/3=( )/18、6/21=2/( )、3/5=21/( )、27/39=( )/13

師:這里面什么變了,什么不變?(生:分子和分母變了,但分數的大小不變)

師:分子與分母是怎樣變化的?(同時乘或除以相同的數,0除外)

師:分數的基本性質與商不變性質有什么聯系?

D、質疑完善

3/4 = 3×( )/ 4×( )

師:括號中可以填哪些數?

預設:可以填無數個數

師:如果只用一個數來表示,填什么數好?

預設:字母

師:這個字母有什么特殊要求嗎?(0除外)

得到一個初級的數學模型。3/4= 3×X/ 4×X(X≠0)

讓學生打開課本進行閱讀、內化,并想一想還有什么問題嗎?

(三) 練習升華

1、5/7=( )/35 、3/4=9/( )、3/( )=12/20、16/24=( )/3

2、把5/6和1/4都化為分母為12而大小不變的分數。

3、把2/3和3/4都化為分子為6而大小不變的分數。

4、把2/5的分子加上2以后,要使分數的大小不變,分母應加上多少?

5、和 哪一個分數大,你能講出判斷的依據嗎?

(四)總結延伸

師:這節課學了什么?

師:如果一個分數為A/B,你能用一個式子來表示分數的基本性質嗎?

A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)(板書)

六、作業p87-1、2

板書設計

分數基本性質

分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。

A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)

6÷8

3÷4

12÷16

分數的基本性質教學設計 2

教學目標:

結合趣味故事經歷認識分數的基本性質的過程。

初步理解分數的基本性質,會應用分數的基本性質進行分數的改寫。

經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣

教學重點:理解掌握分數的基本性質。

教學難點:歸納分數的性質。

學生準備:長方形紙片。

一、創設故事情境,激發學生學習興趣并揭示課題。

編了一個唐僧師徒4人分西瓜的故事,利用孫悟空的機智聰明和豬八戒貪吃的特點。創設問題情境引起學生的探究興趣,通過把一個西瓜平均分成4塊,豬八戒吃了一塊,再把這西瓜平均分成8塊,豬八戒吃了2塊。最后把西瓜分16塊,豬八戒吃了4塊,設計這個故事的目的是使學生在已有生活經驗和分數知識的背景下,了解豬八戒沒有多吃到餅的事實,為理解分數的基本性質提供實踐經驗。在看完故事后向學生提問你了解到了哪些數學信息,想到了什么問題?

讓學生討論并用自己的方法說明八戒沒有多吃到餅。讓學生親自動手折一折、分一分、比一比,通過課件從直觀上讓學生感受到這三個分數大小是相等的。而這兩個分數的分子和分母都不相等,可分數卻相等,這其中有什么規律呢,從而來揭示課題。

二、小組合作,探究新知:

1、動手操作、形象感知

出示課件,讓學生觀察討論圖中分數的涂色部分是多少?

A、談話:請同學們拿出課前準備好的一張正方形的紙,你能先對折,并涂出它的1/4嗎?

B、追問:你能通過繼續對折,每次找一個和1/4相等的其他分數嗎?

C、學生操作,并組織交流:每次對折后,正方形被平均分成多少份。涂色部分有幾份。并思考可以用什么分數表示涂色的部分,得到的分數與1/4是否相等。交流時讓不同對折方法的學生充分展示。

2、觀察比較、探究規律

(1)通過動手操作,你認為它們誰大?請到展示臺上一邊演示一邊講一講。

(2既然這三個分數相等,那么我們可以用什么符號把它們連接起來?

(3)這三個分數的分子、分母都不相同,為什么分數的大小卻相等的?你們能找出它們的變化規律嗎?請同學們四人為一組,討論這兩個問題

(4)通過從左到右的觀察、比較、分析,你發現了什么?

使學生認識到這四個正方形同樣大,雖然平均分的份數不一樣,但陰影部分的面積相等,四個分數也相等。課件出示連等式子。

【通過展示不同的對折方法,使學生體會解決問題方法的多樣性,拓展學生的思維。】

3引導觀察:請大家觀察每個等式中的兩個分數,它們的分子、分母是怎樣變化的?

觀察思考后。在課文上填空,再在小組內交流。然后教師再集中指導觀察:

先從左往右看:1/4是怎樣變為與它相等的2/8的?由2/8到4/16,分子、分母又是怎樣變化的?誰用一句話說出它的變化規律?再從右往左看:4/16是怎樣變化成與之相等的2/8的.?2/8、1/4呢?用一句話說出它的變化規律?

4、歸納規律

提問:綜合以上兩種變化情況,誰能用一句話概括出其中的規律?

學生交流歸納,最后全班反饋“分數的分子和分母同時乘或除以相同的數﹙0除外﹚,分數的大小不變,這是分數的基本性質”

6、小結

同學們在這節課的學習中表現得很出色,說一說你有什么收獲或體會?

【通過小結,既對整個課堂學習的內容有一個總結,又能讓學生產生后續學習和探究的欲望,將學生的學習興趣延伸到了下節課】

四、鞏固強化,拓展應用

多樣的練習可以讓學生及時鞏固所學知識,又調動了學生學習的積極性。

五、游戲找朋友。

六、布置作業:

在上這課之前,認真備課,精心設計課堂思路,準備好教具。課前,活躍氣氛。開始可能是由于農村吧,基本上,上課都是用黑板,難得一次上課時利用多媒體上課的。學生對此也是很有興趣的,特別是在創設情景的時候,很開心的投入課堂氣氛來。緊接著動手操作等步驟都很好。唯一不足是學生沒感大膽發言。對于問題,答得不是很清晰。教師讓學生主動探索,逐步獲取規律,最后也都一一的解答并歸納分數的性質。對于從左到右的變化,分子分母都變大了,但分數大小不變。從右到左,分子分母都變小,分數大小不變。從而得出規律。對于這分數的性質要讓學生抓住幾個重點詞,“都”“乘以或除以”“相同的數”“零除外”重點讓學生熟記分數的性質。多層的鞏固練習。加深學生的理解。并且能運用分數的性質完成作業。最后,讓學生輕松愉快地應用著這節課所學的知識進行找朋友的游戲。

分數的基本性質教學設計 3

教學目標:

1、讓學生理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系。

2.根據分數的基本性質,學會把一個分數化成用指定的分母做分母或指定的分子做分子而大小不變的分數,為學習約分和通分打下基礎。

學習目標:

1、理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系。

2、根據分數的基本性質,學會把一個分數化成用指定的分母做分母或指定的分子做分子而大小不變的分數

重點難點:

1、使學生理解分數的基本性質。

2、讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。

過程設計:

一、激情導入

1、導入課題

生讀故事。

唐僧師徒四人在西天取經的路上得到了一個大西瓜,他們知道豬八戒想多吃。師傅說:“分給他二分之一,他嫌少,分給他四分之二,他還嫌少,之后師傅說分給他八分之四,這次豬八戒覺得已經很多了,高興得答應了。可是悟空卻在旁邊一個勁地笑,你知道孫悟空為什么笑嗎?

師:孫悟空為什么笑呢?二分之一、四分之二、八分之四這三個分數到底有什么關系呢?下面我們用折紙的方法來看一下它們之間有什么樣的關系?

2、明確目標

理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系;并會應用分數的基本性質。

3、預期效果

達到教學目標

二、民主導學

任務一

任務呈現

動手操作驗證性質

自主學習

師:拿出準備好的三張正方形紙。按照下面的要求來進行操作。請一同學讀學習要求

1、把三張正方形紙平均對折一次、二次、三次,將紙平均分成2、4、8份,分別把2分之二、4分之二、8分之四涂上顏色,并標出二分之一、四分之二、8分之四。

2、仔細觀察三張紙的涂色部份,你們能發現什么?

師:同位分工合作完成。現在開始。

師選擇一份作品粘貼在黑板上,請一同學說一說你們有什么發現?

請二至三位同學說一說。

師:我們都發現了涂色部份的面積是相等的,那你們能不能把二分之一、四分之二、八分之四列成一個等式呢?

生回答。師:現在你們知道孫悟空為什么笑了嗎?請同學回答。

師:豬八戒每次分到的都是一樣多的。它還以為啊,開始分得少,后來分得多。不過豬八戒也許也正納悶呢?這幾個分數的分子和分母各不一樣,那它們的大小怎么會一樣呢?你們想幫豬八戒解決這個問題嗎?(想)

下面請同學們把這個式子從左往右地觀察,看一下每個分數的分子分母怎樣變化?才得到下一個分數。

生:我發現了二分之一的分子與分母同時乘以2得到了四分之二、四分之二的分子和分母同時乘以2得到了八分之四。

請二名同學重復。

師:你們想得一樣嗎?我把二分之一的分子分母同時乘2得到了四分之二、四分之二的分子和分母同時乘2又得到了八分之四。那在這個式子中我們是把分子分母同時乘2,分數的大小不變,那如果我們把分數的分子分母同時乘5分數的大小變嗎?同時乘以10呢?那你們能不能根據這個式子來總結一個規律呢?

生回答:一個分數的分子分母同時擴大相同的倍數,它們分數的大小不變。

請一至二名同學回答。

師板書:分數的分子分母同時乘相同的數,分數的大小不變。

師:誰來舉一個例子。指名三位同學回答,師板書,并問:同時乘以了幾?

師:這樣的例子我們可以舉出很多很多,剛才我們是從左往右觀察的,如果把這個式子從右往右觀察,你們又會發現什么呢?

請一同學回答,

生:我們發現了8分之四的分子與分母同時除以2得了四分之二,四分之二的分子與分母同時除以2得到了二分之一。

師:嗯,分數的分子分母同時除以2分數的大小不變,如果同時除以4大小會變嗎?同時除以5呢?能不能根據這個式子再總結出一句話呢?

生:分數的分子分母同時除以相同的數,分數的大小不變。 (二名學生重復)

師板書:或者除以

師:你能根據剛才總結的規律舉一個例子嗎?

讓三名學生舉出例子,師板書。并問:分子分母同時除以了幾?

展示交流

師指著板書說明:我們說分子分母同時乘或除以相同的數,分數的大小不變,那是不是包括所有的數呢?我們一起來看這樣一個分數。板書八分之四同時除以0,問:這個式子成立嗎?(打上問號)

生:不成立,

師:為什么

生:因為0不能作除數,

師:0不能作除數,所以這個式子是錯誤的.。(畫叉)

師:我再說一個式子,我不除以0了,我乘以0,這個式子成立嗎?(板書:8分之四乘以0,打上問號)

生:不成立,因為在分數當中分母相當于除數,除數不能為0。

師:對,大家都知道0不能作除數,所以這兩個式子都是不成立的?(畫叉)我們剛才總結的分數的分子分母同時乘或者除以相同的數,不是所有的數需要加上一句什么話

生:0除外

師板書0除外

師:到現在為止這個規律我們就總結完了,那在這個規律里你覺得什么地方需要我們注意一下呢?

生:同時和相同的數

師:“同時”和“相同的數”(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節課要學習的分數的基本性質。(師板書課題)

師:我相信如果當時豬八戒會這個分數的基本性質,那就不會出現這樣的笑話了,那咱們同學們千萬不要范它那樣的錯誤了。下面讓我們一起把分數的基本性質邊讀邊記。

生齊讀二遍。

師:這個分數的基本性質特別有用,我們可以根據分數的基本性質把一個分數化成和它相等的另外一個分數。

任務二

任務呈現

課本76頁的例2,請一同學讀題。

自主學習

生獨立完成,完成后和同位的同學說一說你是怎樣想的。

展示交流

每題請二名同學回答,(集體訂正答案)

檢測導結

1、目標練習

76頁“做一做”

練習十四的1、2、6、7題

2、結果反饋

生做完后同桌交流,再指名說說結果。

3、反思總結

今天這節課你都學會了哪些知識?請大家談談學習了分數的基本性質的收獲。

三、輔助設計

教具課件設計

小黑板正方形紙數塊

板書設計

分數的基本性質

練習和作業設計

1、完成課本76頁做一做中的1、2題。

生獨立完成,師指名回答。

2、完成練習十四中的1、2、5、6、7題。

師小結:這節課我們學習了分數基本性質,而且我們還學會了根據分數的基本性質把一個分數轉化成和它相等的另外一個分數,其實生活當中還有許多的數學知識,如果你留心觀察,你就能夠發現,我希望大家都能做一個在學習上面的有心人。

分數的基本性質教學設計 4

一、教學目標

1.經歷探索分數基本性質的過程,理解分數的基本性質。

2.能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。

3.經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。

二、教學重、難點

教學重點是:分數的基本性質。

教學難點是:對分數的基本性質的理解。

三、教學方法

采用了動手做一做、觀察、比較、歸納和直觀演示的方法

四、教學過程

(一)、故事引入,揭示課題

1.教師講故事。

猴山上的猴子們最喜歡吃猴王做的香蕉餅了。有一天,猴王做了三塊大小一樣的香蕉餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。小朋友們,你知道哪只猴子分得多嗎?

討論:三只猴子一起分到了三塊大小一樣的香蕉,它們都覺得自己分得的最多。經過仔細觀察和比較,發現其實每只猴子分得的香蕉數量都是一樣的。

引導:聰明的猴王想出了一個聰明的辦法來滿足小猴子們的要求并且公平分配食物。他決定讓每只小猴子依次從一堆食物中取一份,直到食物被取完為止。這樣每只小猴子都有機會先后選擇食物,確保了公平分配。這個方法既滿足了小猴子們的要求,又讓他們學會了合理分享。

2.組織討論。

(1)三只猴子分得的餅同樣多,說明它們分得的餅的分數是相等的。也就是說,三只猴子分得的餅的分數是14、28和312,它們之間是相等的關系。雖然它們平均分的份數和表示的份數不同,但是它們的大小是相等的。

(2)猴王將三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小是否相等呢?你還能找出另一組相等的分法嗎?通過仔細觀察我們可以發現:2/3=4/6=6/9。

(3)我們班有40名同學,分成了四組,每組10人。那么第一、二組學生的人數占全班學生人數的幾分之幾?請用分數表示,并簡化分數。

3.引入新課:黑板上三組相等的分數有什么共同的`特點?學生回答后板書:

分數的分子和分母變化了,分數的大小不變。

它們各是按照什么規律變化的呢?我們今天就來共同研究這個變化規律。

(二)、比較歸納,揭示規律

1.出示思考題。

比較每組分數的分子和分母:

(1)從左往右看,是按照什么規律變化的?

(2)從右往左看,又是按照什么規律變化的?

讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。

2.集體討論,歸納性質。

(1)從左往右看,由34到68,分子、分母是怎么變化的?引導學生回答出:把34的分子、分母都乘以2,就得到68。原來把單位“1”平均分成4份,表示這樣的3份,現在把分的份數和表示份數都擴大2倍,就得到68。

板書:

(2)34是怎樣變化成912的呢?怎么填?學生回答后填空。

(3)引導口述:34的分子、分母都乘以2,得到68,分數的大小不變。

(4)學生們對幾組分數進行了觀察,發現分子和分母的變化規律是同時乘以相同的數。經過歸納總結,他們得出結論:分數的分子和分母都乘以相同的數,分數的大小不變。

(板書:都乘以

相同的數)

(5)分數的分子和分母之間存在一個共同的因數,當分子和分母同時除以這個因數時,得到的新分數與原分數大小相同。

(板書:都除以)

(6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二個“都”字,換成“或者”)再對照教科書中的分數基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規定“零除外”?

(板書:零除外)

(7)齊讀分數的基本性質。先讓學生找出性質中關鍵的字、詞,如“都”、“相同的數”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數基本性質。

3.出示例2:把12和1024化成分母是12而大小不變的分數。

思考:要把12和1024化成分母是12而大小不變的分數,分子、分母怎么變化?變化的依據是什么?

4.討論:猴王運用什么規律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?

5.質疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。

(三)、溝通說明,揭示聯系

通過舉例,分數的基本性質與商不變性質之間有密切的聯系。在分數中,分子和分母之間存在著除數與商的關系,分子除以分母就得到分數的值。當我們進行分數的乘除運算時,商不變性質起著重要作用。商不變性質指的是在乘除運算中,如果被乘數或被除數同時乘(除)以(除以)一個相同的數,那么乘積(商)不變。舉例來說,如果我們有一個分數$frac{a}{b}$,其中$a$和$b$分別是整數,那么當我們將分子和分母同時乘以相同的數$c$,得到的新分數為$frac{ac}{bc}$。根據商不變性質,這兩個分數是等價的,即它們代表同一個數值。這說明分數的基本性質中的分子和分母可以同時乘以一個相同的數,不改變分數的值。因此,分數的基本性質與商不變性質共同構成了分數運算中的重要規律。在進行分數的乘除運算時,我們可以利用商不變性質來簡化計算,保證結果的準確性。

如:34=3÷4=(3×3)÷(4×3)=9÷12=912

(四)、多層練習,鞏固深化

1.口答。(學生口答后,要求說出是怎樣想的?)

2.判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數的基本性質中哪幾個字不相符。)

教學反思:

學生是學習的主體,教師是引導和組織學習的助手。在數學課堂上,教師的作用是激發學生的學習興趣,引導他們積極參與到數學學習中來。為了實現這一目標,教師需要深入了解學習方法,建立起一種以探究為核心的學習模式。教師應該激發學生的學習動力,為他們創造充分的學習機會,幫助他們通過自主觀察、討論、合作、探究來真正理解和掌握數學知識和技能,充分發揮學生的主動性和創造性。一個重要的特點是設計學習方法,從大膽猜想、實驗感知、觀察討論到總結歸納,都是為了促進學生自主探究和合作學習而設計的。

1、學生在故事情境中大膽猜想。

通過創設“猴王分餅”的故事,讓學生猜測一組三個分數的大小關系,為自主探索研究“分數的基本性質”作必要的鋪墊,同時又很好地激發了學生的學習熱情。

2、學生在自主探索中科學驗證。

在學生大膽猜想的基礎上,教師適時揭示猜想內容,并對學生的猜想提出質疑,激發學生主動探究的欲望。在探索“分數的基本性質”和驗證性質時,通過創設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的正確性,突現出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調學生自主參與,通過規律讓學生自主發現、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。

3、讓學生在分層練習中鞏固深化。

在練習的設計上,我們需要確保題目緊扣重點,設計新穎、多樣,難度層次遞進。首先,前兩題作為基礎練習,旨在幫助學生理解概念,全面了解他們對新知識的掌握情況。第三題則是在前兩題基礎上,鞏固練習,加深對所學知識的理解。最后一題通過游戲形式,旨在加深學生對分數基本性質的認識,激發學生學習興趣,活躍課堂氣氛。這樣設計不僅能照顧到學生的思維發展過程,同時也能拓寬學生的思維空間,真正做到學以致用。

在教學過程中,我們應該注重引導學生進行多種方法的驗證,而不僅僅局限于老師提供的幾種方法。數學教學的目的不是僅僅教會學生問題的答案,更重要的是教會他們思考問題的方法和途徑。因此,當讓學生驗證結論的正確性時,應該給予他們更大的自由度,讓他們自己去尋找多種途徑進行驗證。這樣不僅可以激發學生的求知欲和探索欲,也有助于培養他們的創新能力和解決問題的能力。

分數的基本性質教學設計 5

教學要求

①分數是數學中的一種特殊表示形式,用來表示一個整體被分成若干等份中的一部分。分數有一些基本性質,比如分數的大小與分子成正比,分母成反比,即分子越大,分數越大;分母越大,分數越小。另外,分數可以化簡為最簡形式,即分子與分母沒有共同的因數。當我們需要比較或運算不同分母的分數時,可以通過找到它們的最小公倍數,將分數化為相同分母的形式,從而方便比較大小或進行運算。

②培養學生觀察、分析和抽象概括能力。

③滲透“事物之間是相互聯系”的辯證唯物主義觀點。

教學重點理解分數的基本性質。

教學用具每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。

教學過程

一、創設情境

1.120÷30的商是多少?被除數和除數都擴大3倍,商是多少?被除數和除數都縮小10倍呢?

2.說一說:

(1)商不變的性質是什么?

(2)分數與除法的關系是什么?

3.填空。

1÷2=(1×2)÷(2×2)==。

二、揭示課題

分數除法中是否存在商不變的性質,讓我們一起來探索吧!你認為在分數中會不會存在類似的性質呢?這個性質會是什么呢?讓我們一起大膽猜測吧!

隨著學生的回答,教師板書課題:分數的基本性質。

三、探索研究

1.動手操作,驗證性質。

(1)請拿出三張同樣大小的長方形紙條,將它們分別平均分成2份、4份、6份,并分別用不同顏色涂抹其中的1份、2份、3份。請用分數形式表示每張紙條上被涂色的部分。

(2)觀察比較后引導學生得出:==

(3)從左往右看:==

由變成,平均分的份數和表示的份數有什么變化?

把平均分的份數和表示的份數都乘以2,就得到,即==(板書)。

把平均分的份數和表示的份數都乘以3,就得到,即:==(板書)。

引導學生初步小結得出:分數的分子、分母同時乘以相同的數,分數的大小不變。

(4)從右往左看:==

引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。

讓學生再次歸納:分數的分子、分母同時除以相同的數,分數的大小不變。

(5)引導學生概括出分數的基本性質,并與前面的猜想相回應。

(6)提問:這里的“相同的數“,是不是任何數都可以呢?(補充板書:零除外)

2.分數的基本性質與商不變的性質的比較。

在除法里有商不變的性質,在分數里有分數的基本性質。

想一想:根據分數與除法的關系以及整數除法中商不變的性質,你能說明分數的基本性質嗎?

3.學習把分數化成指定分母而大小不變的分數。

(1)出示例2,幫助學生理解題意。

(2)啟發:要把和化成分母是12而大小不變的.分數,分子應該怎樣變化?變化的根據是什么?

(3)讓學生在書上填空,請一名學生口答。

4.練習。教材第108頁的做一做。

四、課堂實踐。

練習二十三的1、3題。

五、課堂小結

1.這節課我們學習了什么內容?

2.什么是分數的基本性質?

六、課堂作業

練習二十三的第2題。

七、思考練習

練習二十三的第10題。

教學反思:

“分數的基本性質”是小學五年級下冊數學教材的重要內容,它是約分、通分的基礎,對于學習比的基本性質也具有重要意義。因此,分數的基本性質是本單元的重點課程。在這節課上,我將采用“猜想和驗證”的教學方法,為學生留出充分的探索時間和廣闊的思維空間,讓他們在實踐中掌握知識,培養數學思維。通過這樣的教學方式,不僅使學生掌握了數學基本知識,更重要的是激發了他們學習的主動性,培養了他們解決實際問題的能力。這樣的教學目的在于培養學生學會學習、學會思考、學會創造,從而使他們能夠運用數學的思維方式解決未來生活中遇到的各種問題,這也是學生必備的基本素質。

這節課是在學生已經掌握了商的不變性質,并具有一定應用經驗的基礎上進行的。在這節課中,我設計了一些新的挑戰和問題,幫助學生深入理解商的不變性質,并在實際問題中靈活運用所學知識。通過這種方式,學生可以提高對商的理解和運用能力,為他們進一步學習和應用商的相關知識打下堅實的基礎。

1、商不變的性質與除法、分數的關系密切相關,商不變意味著在一定條件下商的值保持不變。在商不變的基礎上,我們可以猜想分數的基本性質是什么?請同學們根據商不變的性質大膽猜想一下,分數的基本性質是什么?并且說出你們的想法。

2、讓學生在折紙游戲中充分發揮主體作用,通過操作、觀察、比較來驗證自己的猜想。可以讓他們嘗試不同的折法,觀察折疊后的形狀和顏色變化,并用不同的顏色表示不同的分數,培養他們的動手能力和觀察解決問題的能力。

3、設計練習時要考慮到知識的轉化能力,因此練習的設計應該具有典型性、多樣性、深度和靈活性。首先,通過基礎練習深化對分數基本性質的理解,包括分子、分母、約分、通分等方面。然后,在學完整個知識點后,進行綜合練習,鞏固知識,提高能力。在練習中注重應用拓展,讓學生能夠將所學知識應用到實際問題中,培養他們解決問題的能力。

分數的基本性質教學設計 6

教學目標

1、經歷探索相等分數的分子、分母變化規律的過程,使學生理解分數的基本性質。

2、能運用分數的基本性質把一個分數化成指定分母而大小不變的分數。

3、培養學生觀察、分析和抽象概括的能力。

教學重點

理解分數的基本性質

教學難點

發現和歸納分數的基本性質,并能應用它解決相關的問題。

教學過程

一、復習導入

1、說說下面各分數的含義、分數單位及它有幾個這樣的分數單位。

2、口算

120÷30= 40÷5=

12÷3= 400÷50=

師:觀察兩組算式,說說你發現了什么?是我們已經學過的除法的什么性質呢?

在除法運算中,被除數和除數同時乘或除以同一個非零數時,商不會改變,這就是除法的商不變性質。

師:除法和分數有什么關系呢?

板書課題:分數的基本性質

二、新授

師:阿凡提同學都熟悉吧?今天老師帶來一個有關阿凡提的數學小故事,跟同學分享一下:

有一個農夫爺爺,他有三頭同樣健壯的牛,要分給他的三個兒子。老大分到第一頭牛的一半,老二分到第二頭牛的四分之二,老三分到第三頭牛的八分之四。老二聽了,覺得自己很吃虧,于是三兄弟大吵起來。正巧經過的智者阿凡提問清爭吵原因后,他想了想,然后跟他們說了幾句話。三兄弟聽后恍然大悟,停止了爭吵。

同學們,你們知道阿凡提跟三兄弟講了什么嗎?

生自由發揮。

師:這里有三張同樣大小的正方形紙,分別代表著地主爺爺家的三塊地。我們一起來看看三兄弟分到的地。你能用分數來表示嗎?(出示三張紙)

師:通過觀察,可知,三兄弟分到的'地同樣多。那這三個分數是什么關系呢?

生:相等

師:請觀察這三個分數的分子和分母,它們之間存在一種規律。經過仔細觀察可以發現,這三個分數的分子和分母在每個分數中都是互換位置的。也就是說,第一個分數的分子和分母交換位置后得到第二個分數,第二個分數的分子和分母再次交換位置后得到第三個分數。這種規律使得這三個分數的大小相等,但分子和分母各不相同。

(預設)生1:分子、分母同時擴大2倍。

生2:分子、分母同時擴大4倍。

師:那從右往左看呢?

總結規律:分數的基本性質是指分數中的分子和分母同時乘或除以相同的數(除數不能為0),分數的大小不變。這一性質可以幫助我們簡化分數,使得計算更加方便和簡便。

師:和除法商不變的性質對比觀察,你有什么發現?

三、分數基本性質的運用

把和化成分母是12而大小不變的分數。

四、鞏固練習

五、課堂總結

分數的基本性質教學設計 7

教學目標

1、經歷探索分數的基本性質的過程,理解分數的基本性質。

2、能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。

3、經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。

教學重點:

理解掌握分數的基本性質。

教學難點:

歸納性質

教學設計

(一)創設情境,引起學生參與興趣

1、猴王變戲法(學生模仿復習)

除法式子變形

分數與除法變形

2、教師出示三只可愛的小猴圖片,獎勵聽故事:

有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成兩塊,分給第一只小猴一塊,第二只小猴見到說:“太小了,我要兩塊。”猴王就把第二塊餅平均切成四塊,分給第二只小猴兩塊。第三只小猴更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切6塊,分給第三只小猴三塊。

同學們,你知道哪只猴子分得的多嗎?(哪只猴子分得的多?讓學生發表自己的意見)

3、教師出示三塊大小一樣的餅,通過師生分餅,觀察驗收后得出結論:三只猴子分得的餅一樣多。聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的.呢?同學們想知道有什么規律嗎?

(二)探究新知

1、動手操作、形象感知

請同學們拿出三張相同形狀同樣大的紙,把每張紙都看作一個整體。動手折出平均分的份數2份、4份、6份,動筆把其中的1份、2份、3份畫上陰影,再把陰影部分剪下來,將剪下的陰影部分重疊,比一比記錄下結論。

分數的基本性質教學設計 8

教學內容:人教版新課標教科書小學數學第十冊75~77頁例

1、例2.教學目標:1知識與技能目標:

(1)經歷探索分數的基本性質的過程,理解分數的基本性質。

(2)能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。

2、過程與方法目標:

(1)經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數的基本性質做出簡要的、合理的說明。(2)培養學生的觀察、比較、歸納、總結概括能力。

(3)能根據解決的需要,收集有用的信息進行歸納,發展學生歸納、推理能力。

3、情感態度與價值觀目標:

(1)經歷觀察、操作和討論等數學學習活動,使學生進一步體驗數學學習的樂趣。(2)鼓勵學生敢于發現問題,培養學生敢于解決問題的學習品質。

教學重點:探索、發現和掌握分數的基本性質,并能運用分數的基本性質解決問題。教學難點:自主探究、歸納概括分數的基本性質。教學準備:學生準備一張正方形的紙,課件教學過程:

一、故事導入。

師:同學們,你們喜歡看《喜羊羊與灰太狼》的動畫片嗎?生:喜歡。

師:老師這里有一個慢羊羊分餅的故事,羊村的小羊最喜歡吃村長做得餅。一天,村子做了三塊大小一樣的餅分給小羊們吃,他把第一塊餅的1/2分給懶羊羊,再把二塊餅的2/4分給喜羊羊,最后把第三塊餅的4/8分給美羊羊,懶羊羊不高興地說:"村長不公平,他們的多,我的少。”(師邊說邊板書分數)同學們,村長公平嗎?他們那個多,那個少?

生:公平,其實他們分得一樣多。

師:到底你們的猜想是否正確呢?讓我們來驗證一下!

二、探究新知,解決問題:1、小組合作,驗證猜想:(1)玩一玩,比一比.(讀要求)師:我們現在小組合作來玩一玩,比一比.(出示要求)

師:(讀要求)現在開始.(學生匯報)師:你們發現了什么?

生1:老師,我們通過比較這三幅圖的陰影部分完全重合,那這三個分數都相等。(師在分數上畫符號)

生2:老師,我們通過比較這三幅圖的陰影部分完全重合,那這三個分數都相等。(出示課件演示)

2、初步概括分數的基本性質.(2)算一算,找一找.師:(提問)同學們觀察一下,這三個分母什么變了?什么沒變?生1:它們的分子和分母變化了,但分數的大小沒變。生2:它們的分子和分母變化了,但分數的大小沒變。

師:這三個分數的分子和分母都不相同,為什么分數的大小都相等呢?同學們思考一下。

生1:它們的分子和分母都乘相同的數。生2:它們的分子和分母都除以相同的數。

師:那同學們的猜想是否正確呢?它們的變化規律又是怎樣呢?我們小組合作觀察討論。并把發現的規律寫下來。

(出示課件)

小組匯報:(歸納規律)

師:哪一組把你們討論的結果匯報一下,從左往右觀察,你們發現了什么?生1:從左往右觀察,我們發現1/2的分子和分母同時乘2,分數的大小不變。生2:從左往右觀察,我們發現1/2的分子和分母同時除以4,分數的大小不變。師:你們是這樣想的,既然這樣,那么分子和分母同時乘5,分數的的大小改變,嗎?生:不變。

師:同時乘

6.8呢?生:不變。

師:那你們能不能根據這個式子來總結一下規律呢?

生1:一個分數的分子和分母同時乘相同的數,分數的大小不變。生2:一個分數的分子和分母同時乘相同的數,分數的大小不變。師:(板書)誰來舉這樣一個例子?生:......

師:這樣的例子,我們可以舉很多,剛才我們是從左往右觀察,從右往左觀察,哪一組匯報一下。

生:從右往左觀察,我們發現了,4/8的分子和分母同時除以2,得到了2/4,分數2/4的分子和分母同時除以2得到分數1/2,他們的分數的大小不變。

生:從右往左觀察,我們發現了,4/8的分子和分母同時除以2,得到了2/4,分數2/4的分子和分母同時除以2得到分數1/2,他們的分數的大小不變。(師課件演示)

師:你們是這樣想的,既然這樣,那么分子和分母同時除以5,分數的的大小改變,嗎?生:不變。

師:同時除以

6.8呢?生:不變。

師:那你們能不能根據這個式子來總結一下規律呢?

生1:一個分數的分子和分母同時除以相同的數,分數的大小不變。生2:一個分數的分子和分母同時除以相同的數,分數的大小不變。師:(板書)誰來舉這樣一個例子?生舉例

3、強調規律

師:我把兩句話合成了一句話,根據分數的這一變化規律,你認為下面的式子對嗎?(課件出示)

生:回答,錯的,因為分數的分子、分母沒有乘相同的數。師:(在黑板上圈出)對必須乘相同的數。

生:錯,因為分子乘2,分母沒有乘2,分子和分母沒有同時乘。師:(在黑板上圈出)對必須同時乘。

師:分數的分子、分母都乘或除以相同的數,分數的大小不變,這里“相同的數”是不是任何數都可以呢?我們看一看(課件出示)師:這個式子成立嗎?

生:不成立,因為0不能做除數,4乘0得0是分母,分母相當于除數,所以這個式子是錯誤的。

師:我不乘0,我除以0可以么?生:不成立,因為0不能作除數。

師:同學們不錯,這兩個式子都不成立,我們剛才總結的分子、分母同時乘或除以相同的數,這相同的數必須(生:0除外)(師板書)

師:這一變化規律就是我們這節課學習的內容,分數的基本性質,(板書課題)在這一規律里,需要我們注意的`是:(生:同時、相同的數、0除外)

師:我相信懶羊羊學習了分數的基本性質,那就不會生氣了它知道(出示課件)一樣多,咱們同學們千萬不要犯它同樣的錯誤了,我們把這一條規律讀兩遍,并記下它。(生讀規律)

師:學習了分數的基本性質,我想利用你們的火眼金睛,當一當小法官(出示課件)

生:(讀題,用手勢表示對、錯,并說出原因)

三、運用規律,自學例題1、學習例2師:這個分數的基本性質特別的有用,我們可以根據分數的基本性質把一個分數化成和它相等的另外一個分數,我們一起去看一看。(課件出示例題)學生讀題

師:分子、分母應該怎樣變化?變化的依據是什么?小組內討論一下(學生討論)師:誰來說一說?

生:2/3的分子分母同時乘4得到8/12,變化的依據是分數的基本性質。生:10/24的分子和分母同時除以2,得到5/12,變化的依據是分數的基本性質。師:回答得不錯,自己獨立完成這題。

師:(巡視)請一名學生說出答案,(生說,師出示答案)

四、分數的基本性質與商不變的性質

師:分數的基本性質作用可大了,那大家回想一下,這與我們以前學習的除法里面哪一個性質相似?生:商不變的性質。

師:除法里商不變的性質是怎么說的?

生:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變。師:你們能否用商不變的性質來說明分數的基本性質?小組內討論一下。

小組討論

師:哪一組把討論的結果匯報一下。

生:在分數里,被除數相當于分子,除數相當與分母,被除數與除數同時擴大或縮小相同的倍數,就相當于分子、分母同時乘或除以相同的數(0除外),因此,商不變就相當于分數的大小不變。(師板書)

師:既然能用商不變的性質來說一說分數的基本性質,那我們來小試牛刀。(出示課件)

生:5除以10等于1/2,當被除數5縮小5倍就相當于分子除以5,分子除以5,分母也除以5,所以10除以5得2.生:12除以24等于4/8,當除數24除以3得8就相當于分母除以3,分母除以3分子也除以3,12除以3得4.五、課堂運用。1、跨欄高手

師:同學們的回答簡直太棒了,那你們有資格讓老師把你們帶到運動場去當跨欄高手了。(出示課件)

師:(學生回答三題)同學們這么大的數一下子就得出結果,有什么秘訣嗎?生:用大數除以小數,就知道分母、分子擴大了幾倍.2、拓展延伸:

師:當了跨欄高手,我們的成績非常的好,那我們就到羊村去玩吧,來到羊村,慢羊羊讓大家當村長,解決難題,你們敢接招嗎?生:敢

師:(出示課件)那我們就要小組為單位,開始玩游戲。小組匯報結果

六、撿拾碩果

看到同學們這么自信的回答,老師知道今天大家的收獲不少,說一說這節課你都收獲了哪些?生說

師:同學們,表現得太好了,這節課,老師從你們的身上也學到了許多,謝謝你們,下課!

分數的基本性質教學設計 9

教學內容:蘇教版小學數學第十冊第95頁至97頁。

教學目標:

知識目標:通過教學使學生理解和掌握分數的基本性質,能利用它改變分數的分子和分母,而使分數的大小不變。

能力目標:培養學生的觀察能力、動手操作能力和分析概括能力等。

情感目標:讓學生在學習過程當中養成互相幫助、團結協作的良好品德。

教學準備:圓形紙片、彩筆、各種卡片。

教學過程:

一、創設情境,激發興趣

孫悟空有3根一模一樣的甘蔗,小猴子貝貝、佳佳、丁丁看見了,一哄而上,叫嚷著要吃甘蔗。孫悟空說: “好,貝貝分第一根甘蔗的,佳佳分第二根甘蔗的,丁丁分第三根甘蔗的。”貝貝、佳佳聽了,連忙說:“孫大圣,不公平,我們要分得和丁丁的同樣多。”孫悟空真的分得不公平嗎?(學生思考片刻)

【通過學生耳熟能詳的人物對話,給學生設計一個懸念,抓住學生的好奇心理,由此激發學生的學習興趣。】

二、動手操作 、導入新課

師:我們也來分分看。(學生拿出準備好的圓形紙片。)師:我們把三張紙片看成三塊餅,大家比比看,每人的三塊餅大小相等嗎?請拿出第一塊餅,我想要一塊,而且大小要是第一塊餅的一半,你能做到嗎?你給我的為什么是這塊餅的一半呢?用分數怎么表示呢?我現在想要兩塊,而且大小要跟剛才給我的餅一樣大,你又能做到嗎?用分數怎樣表示呢?我如果想要四塊,大小跟前兩次給我的一樣,你還能做到嗎?這次用分數又該怎樣表示呢?這三個分數大小相等嗎?為什么呢?這節課,我們就來研究這個數學問題。

【通過學生的動手操作,初步感知三個分數的大小相等,為尋找原因設置懸念,再次激發學生的學習興趣。】

三、觀察對比, 由“數”變 “式”

你們三次給我的餅大小相等嗎?那么這三個分數大小怎樣?可以用怎樣的式子表示?(==)(從這里你能看出,孫悟空分甘蔗,分得公平嗎?)

四、概括分析,由“式”變 “語”

⒈觀察一下這個式子,3個分數有什么不同?有什么地方相同?分數的大小為什么會不變呢?要弄清楚這個問題,我們必須先研究分數的分子、分母是怎樣變化的。

⒉先從左往右看,是怎樣變為與它相等的的?

(1)分母乘2,分子乘2。

根據分數的意義,“”表示把單位“1”平均分成2份,取其中的1份,而現在把單位“1”平均分成4份,也就是把原兩份中的每一份又平均分成2份, 所以現在平均分成了2×2=4(份),現在要得跟原來的同樣多,必須取幾份?[1×2=2(份)]==

即原來把單位“1”平均分成2份,取1份,現在把平均分的份數和取的份數都擴大2倍,就得到。與的大小相等,分數值沒變。

(2)由到,分子、分母又是怎樣變化的?(把平均分的份數和取的份數都擴大了4倍。)==

(3)誰能用一句話說出這兩個式子的變化規律?

⒊再從右往左看

(1) 是怎樣變化成與之相等的的?

原來把單位“1”平均分成4份,取其中的2份,現在把同樣的單位“1”平均分成2份,即把原來的每兩份合并成 1份,現在要取得跟原來的同樣多,只需取幾份?[2÷2=1(份)]也就是現在把平均分的份數和取的份數都縮小了2倍,得到,分數的大小沒有變。

==

(2) 又是怎樣變成的?(把平均分的份數和取的份數都縮小了4倍。)

==

(3)誰能用一句話說出這兩個式子的變化規律?

⒋綜合以上兩種變化情況,誰能用一句話概括出其中的規律?你覺得有什么要補充的嗎?(不能同時乘或除以0)為什么?

⒌這就是今天我們所學的“分數的基本性質”(板書課題,出示“分數的基本性質”)。

(1)理解概念。

學生讀一遍,你認為哪幾個字特別重要?(相同的數、0除外)相同的數,指一些什么數?為什么零除外?

(2)瘃木鳥診所。(請說出理由)

分數的分子和分母同時乘或者除以相同的數,分數的'大小不變。( )

分數的分子和分母同時乘或者除以一個數(零除外),分數的大小不變。( )

分數的分子和分母同時乘或者除以相同的數(零除外),分數的大小不變。( )

⒍小結。

從判斷題中我們可以看出,分數的基本性質要注意什么?學到這兒,大家想一想,我們以前學過的什么性質跟分數的基本性質類似?誰能用整數除法中商不變的性質來說明分數的基本性質?

【此過程主要由學生通過觀察、比較,得出這三個分數大小相等的規律,由此牽引到其他的有同等規律的分數中,從而引出分數的基本性質:分子、分母是同時變化的,是同向變化的(是擴大都擴大,是縮小都縮小),是同倍變化的(擴大或縮小的倍數相同)。只有這樣變化,分數的大小才不會變。】

五、鞏固練習

⒈卡片練習:

⒉做P96“練一練”1、2。

⒊趣味游戲:

數學王國開音樂會,分數大家族的節目是女聲大合唱,只有幾分鐘就要演出了,請大家趕緊幫合唱隊的成員按要求排好隊。

要求:第一排是分數值等于的,第二排是分數值等于的,還有一位同學是指揮,他是誰?你是怎樣想的?

【通過練習,讓學生加深對分數的基本性質的理解,為下節課分數的基本性質的應用打好堅實的基礎。】

六、課堂總結

這節課你學到了什么?什么是分數的基本性質?你是怎樣理解的?

七、布置作業

做P97練習十八2。

分數的基本性質教學設計 10

教學目標:

知識與技能:掌握分數的基本性質對于學生來說非常重要。分數的基本性質包括:分數的大小與分子、分母的關系,分數的化簡和擴大,分數的比較大小等。通過學習分數的基本性質,可以幫助學生更好地理解和運用分數,提高他們的數學能力。同時,分數的基本性質與整數除法中商不變性質有著密切的關系,這也有助于學生對整數除法的理解和運用。在學習中,學生需要掌握如何將一個分數化簡為分母相同而大小不變的分數。這需要學生觀察比較分數的大小,抽象概括規律,并進行實際操作。通過這樣的練習,可以培養學生的邏輯思維能力和數學解決問題的能力。因此,學生在學習分數的基本性質時,應注重理解概念,掌握方法,多進行練習,提高自己的數學素養。

過程與方法

在探索分數基本性質的過程中,我們體會到了數學思想方法中的“變與不變”以及“轉化”的重要性。這個過程激發了我們的求知欲,也讓我們體會到了數學思維的樂趣。通過互相交流和合作,我們不僅增進了對分數的理解,還培養了團隊合作的意識。這種積極主動的學習態度將成為我們探索更多數學知識的動力,讓我們更加享受數學帶來的樂趣。

教學重點

理解和掌握分數的基本性質,會運用分數的基本性質。

教學難點

自主探究出分數的基本性質

教學準備:

PPT課件、每小組準備三個同樣大小的圓形紙片、三張完全一樣的長方形(正方形)紙、直尺、彩筆等。

教學流程:

一、故事導入激趣引思

引言:好的,我來修改一下:大家是否能猜出剛剛老師播放的是哪首經典動畫片的主題曲呢?沒錯,我們今天的學習將從中國古典名著《西游記》的故事開始。

講故事:唐僧師徒四人行至一村莊,路過一家餅鋪,慈悲心化緣得到三塊同樣大小的餅。唐僧想著如何公平地分配這三塊餅,便提出了一個方案:將第一塊餅平均分成2份,讓豬八戒吃其中的一半;將第二塊餅平均分成4份,讓沙和尚吃其中的一半;將第三塊餅平均分成8份,悟空吃其中的一半。唐僧的提議引起了豬八戒的不滿,他認為這樣分配偏心,為什么悟空可以吃到一半,而他只能吃到一半。唐僧聽了豬八戒的意見后,考慮了一下,覺得確實不太公平。于是,他重新想了一個更公平的分餅方案,讓每個人都能公平地分享這三塊餅。

生發表見解。

二、自主合作探索規律

1、三個徒弟平均分得的餅一樣多。我們來看一下這組分數等式:1/2=2/4=4/8。觀察一下這些分數的分子和分母,它們是相同的嗎?雖然分數的分子和分母不同,但它們的.值卻相等。再換個角度看,我們發現分數的分子和分母發生變化,但它們的比值保持不變。分數真是一種獨特的數學形式呢!

2、

(1)每個小組找出一組大小相等的分數,并想辦法證明這組分數大小相等。

(2)思考:在寫分數的過程中你們發現了什么規律?

組內商量一下然后開始行動!

3、小組研究教師巡視

4、全班匯報

交流評價(教師相機板書)圓紙片匯報長方形紙匯報正方形紙匯報及聯系一組人數說發現規律把每組數從左往右或者從右向左仔細觀察你能發現分子分母的怎樣的變化規律?(可以舉例說演繹推理深入)隨機更換貼圖

板書課題:分數的基本性質打出幻燈

5、反思規律看書對照找出關鍵詞要求重讀共同讀

6、當我們將3除以4得到的結果3/4,與12除以16得到的結果12/16進行比較時,我們發現它們是相等的。這說明了分數的一個基本性質:即分子和分母同時乘以(或除以)同一個非零數時,分數的值不變。這個性質也可以通過整數除法中商不變的性質來解釋:在分數中,當分子和分母同時乘以(或除以)同一個非零數時,相當于整數除法中被除數和除數同時乘以(或除以)同一個非零數,商的值也不變。這再次強調了分數的基本性質,幫助我們更好地理解和運用分數的概念。

三、自學例題運用規律

過渡:同學們展現出了強大的學習能力,在接下來的學習中,老師希望你們能夠自主學習課本96頁的例2,并完成相應的練習。現在開始自主學習吧!祝你們學習順利!

生自學

集體評議:例2練一練1和2,請說說你的根據和想法!重點讓學生說說根據什么,分母、分子是如何變化的。

四、多層練習鞏固深化

1、判斷對錯并說明理由

2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8

2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不變的分數

思考:分數的分母相同,能有什么作用?

3、圈分數游戲圈出與1/2相等的分數

4、對對碰與1/2,2/3,3/4生生組組師生互動

五、課堂小結課堂作業

結語:你看,運用數學知識玩游戲,也是樂趣無窮。這節課我們就上到這兒,作業:余下來的時間請完成課本97頁練習十八的1-3題,做在書上。

分數的基本性質教學設計 11

教學目標

1、學生通過實際操作和觀察,預測和猜想分數的基本性質,然后進行實驗分析,最終通過合情推理來探究創造,從而深入理解和掌握分數的特點。通過這個過程,學生將會發現分數與整數除法中商不變性質之間的聯系。

2、當我們學習分數時,需要掌握將一個分數轉化為另一個分母或分子不變但形式不同的分數的技巧。這樣做可以幫助我們更好地理解分數的基本性質,為后續學習約分和通分打下基礎。

3、培養學生觀察、分析和抽象概括的能力,滲透事物是互相聯系、發展變化的辯證唯物主義觀點。體驗到數學驗證的思想,培養敢于質疑、學會分析的能力。

教學重點

使學生理解分數的基本性質。

教學難點

讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。

教學過程

一、故事情景引入

同學們,每年的中秋節,我們家都會準備一些特別的食物來慶祝這個傳統節日。除了賞月、吃柚子和猜燈謎外,最讓人期待的當屬美味的'月餅了。去年的中秋節,我家樓下的王大媽家里發生了一件有趣的事情,大家想不想知道呢?

好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數)你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。

同學們,你們覺得奶奶公平嗎?現在同桌之間討論一下。

討論完了請舉手。

生甲:“我覺得不公平,小紅分得多。”

生乙:“我覺得小明分得多。”

生丙:“我覺得公平,他們三個分得一樣多。”

師:看起來我們班的同學也產生了分歧,圍繞著李奶奶分發月餅的公平性展開討論。待本節課結束,他們將會有更清晰的認識。

二、新授

師:請拿出你們的學具袋,看看里面有些什么東西呢?(方塊)有幾個呢?(四個)

請你們把這三張圓片疊起來,比一比大小,看看怎么樣?

生:“三張圓片一樣大。”

1.師:“下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了。”

首先,請在第一張圓片上表示出它的1/3;

再在第二張圓片上表示出它的2/6;

然后在第三張圓片上表示出它的3/9。

好了,大家動手分一分。(教師巡視指導)

2、師:“分完了的請舉手?

老師準備了三張同樣大小的圓片,請問哪位同學可以分享一下你是如何將這三張圓片分成相等的部分的?

生:“把第一個圓片平均分成三份,取其中的一份,就是它的三分之一。”生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二。”師:“那九分之三又是怎么得到的呢?大家一起說。”

生:將這個圓形紙片分成九等份,然后取其中的三份,這樣就得到了它的九分之三。教師可以操作將紙片分割成九份,并將其貼在黑板上展示給學生。

3、師:“同學們,觀察這些圓的陰影部分,你有什么發現?”

小結:原來三個圓的陰影部分是同樣大的。

師:“現在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)

生:“奶奶分月餅是公平的,因為他們三個分得的月餅一樣多。”

師:“現在我們的意見都統一了,奶奶是非常公平的,他們三個人分的月餅一樣多。那你覺得1/3、2/6、3/9這三個分數的大小怎么樣呢?”

分數的基本性質教學設計 12

1.教材簡析

《分數的基本性質》是蘇教版小學數學教材第十冊的內容之一,在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小會變嗎?分數的分子分母如何變化,分數的大小不變呢?學生在這種“變”與“不變”中發現規律。

2.教材處理

以前,教師通常把《分數的基本性質》看作一種靜態的數學知識,教學時先用幾個例子讓學生較快地概括出規律,然后更多地通過精心設計的練習鞏固應用規律,著眼于規律的結論和應用。隨著課程改革的深入,教師們越來越重視學生獲取知識的過程,但我們也看到這樣的現象:問題較碎,步子較小,放手不夠,探究的過程體現不夠充分。《分數的基本性質》可不可以有別的教學思路呢?新的課程標準提出:“教師應向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法”。根據這一新的理念,我認為教師可以為學生創設一種大問題背景下的探索活動,使學生在一種動態的探索過程中自己發現分數的基本性質,從而體驗發現真理的曲折和快樂,感受數學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規律的結論和應用,而應有意識地突出思想和方法。基于以上思考,我以讓學生探究發現分數基本性質的過程為教學重點,創設了一種“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把過程性目標”凸顯出來。

設計意圖:

本課主要本著遵循小學數學課程標準“創設問題情境提出問題解決問題建立數學模型解釋數學模型運用數學模型拓展數學模型”的指導思想而設計的。

1、通過故事創設問題情境,貼近學生生活,有利于激發學生學習興趣。

2、從故事情境中提出問題,體現數學來源于生活。

3、小組合作學習,共同探究解決問題,讓學生充分體驗知識產生的過程。

4、從幾組分數中分析,找到分數的基本性質,從而初步建立數學模型。

5、設計有坡度的練習,穿插師生互動,生生互動,讓整個運用知識的形式活潑有趣。、

6、在游戲活動中對數學知識進行拓展運用。

教學目標

1.知識與技能

(1)經歷探索分數的基本性質的過程,理解分數的基本性質。

(2)能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。

2.過程與方法

(1) 經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數的基本性質作出簡要的、合理的說明。

(2) 培養學生的.觀察、比較、歸納、總結概括能力。

(3)能根據解決問題的需要,收集有用的信息進行歸納,發展學生的歸納、推理能力。

3.情感態度與價值觀

(1)經歷觀察、操作和討論等數學學習活動,使學生進一步體驗數學學習的樂趣。

(2)體驗數學與日常生活密切相關。

教學重點

理解分數的基本性質

教學難點

能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數

教學準備

師:電腦課件 學生:圓紙片 長方形紙

教學步驟:

一、故事引人,揭示課題。

1.教師講故事。

話說唐僧師徒四人去西天去取經,這天走在路上,唐僧感覺餓了,就叫孫悟空去化齋,孫悟空答應了聲駕起筋斗云走了,不一會,他就帶回了三塊一樣大的餅,唐僧說:三塊餅,我們四個人怎么吃呢?孫悟空說:“你分給我一塊餅的四分之一就行了” 唐僧就把第一塊餅平均分成四塊,給了一塊給孫悟空。沙僧說:“我想要兩塊”

唐僧把第二塊餅平均分成八塊,給了2塊給沙僧。豬八戒比較貪心,他說:“我要三塊,我要三塊”,于是唐僧把第三塊餅又平均分成12塊,給了豬八戒3塊。同學們,你知道孫悟空、豬八戒、沙僧三人誰分的多嗎?

[ 一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。]

2、組織討論,動手操作。

(1)小組討論,誰分的多

(2)拿出三張紙,分別涂出它們的1/4、2/8、3/12。

(3)比較涂色部分的大小,有什么發現,得出什么結論。

既然他們三個分得的餅同樣多,那么表示它們分得餅的分數是什么關系呢?這三個分數什么變了,什么沒有變?讓學生小組討論后答出:這三個分數是相等關系,1/4=2/8=3/12,它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。

(4)教師演示

3、教學例1

(1)引導比較。

師問:這四個分數,為什么分母不同呢?前兩個分數的分子為什么都是1?

你知道其中哪些分數是相等的嗎?

根據學生回答板書:1/3=2/6=3/9

師追問:你是怎么知道這三個分數相等的?(圖中觀察出來的)

(2)師演示驗證大小。

(3)完成“練一練”第1題

學生先涂色表示已知分數,再在右圖中涂出相等部分。

完成填空后,說說怎么想的。

4、教學例2。

(1)組織操作。

師:取出正方形紙,先對折,用涂色部分表示它的1/2。

學生完成折紙、涂色。

師問:你能通過繼續對折,找出和1/2相等的其它分數嗎?

學生在小組中操作,教師巡視指導。

學生展開折法并匯報,可能出現的方法有:

連續對折兩次,平均分成4份。如圖:

1/2=1/4

②連續對折三次,平均分成8份。如圖:

1/2=4/8

③連續對折四次,平均分成16份。

師追問:每次對折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分數表示?

得到的這些分數與1/2相等嗎?能不能再寫一些與1/2相等的數?

板書:1/2=2/4=4/8=8/16=16/32……

(2)發現規律。

師:你有什么發現?(如學生觀察有困難,可進行以下提示)

①、從左往右看,它們的分子、分母是怎樣變化的?你有什么發現?

學生觀察、思考,在小組中交流。

師問:觀察例1中的1/3=2/6=3/9,有這樣的規律嗎?

分數的基本性質教學設計 13

一、教學目標

1.經歷探索分數基本性質的過程,理解分數的基本性質。

2.能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。

3.經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。

二、教學重、難點

教學重點是:分數的基本性質。

教學難點是:對分數的基本性質的理解。

三、教學方法

采用了動手做一做、觀察、比較、歸納和直觀演示的方法

四、教學過程

(一)、故事引入,揭示課題

1.教師講故事。

猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。小朋友,你知道哪只猴子分得多嗎?

討論:哪只猴子分得的多?讓學生發表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結論:三只猴子分得的餅一樣多。

引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數的基本性質”就清楚了。(板書課題)

2.組織討論。

(1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數是什么關系呢?這三個分數什么變了,什么沒有變?讓學生小組討論后答出:這三個分數是相等關系,14=28=312,它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。

(2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數嗎?通過觀察演示得出:34=68=912。

(3)我們班有40名同學,分成了四組,每組10人。那么第一、二組學生的.人數占全班學生人數的幾分之幾?引導學生用不同的分數表示,然后得出:12=24=20xx。

3.引入新課:黑板上三組相等的分數有什么共同的特點?學生回答后板書:

分數的分子和分母變化了,

分數的大小不變。

它們各是按照什么規律變化的呢?我們今天就來共同研究這個變化規律。

( 二)、比較歸納,揭示規律

1.出示思考題。

比較每組分數的分子和分母:

(1)從左往右看,是按照什么規律變化的?

(2)從右往左看,又是按照什么規律變化的?

讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。

2.集體討論,歸納性質。

(1)從左往右看,由34到68,分子、分母是怎么變化的?引導學生回答出:把34的分子、分母都乘以2,就得到68。原來把單位“1”平均分成4份,表示這樣的3份,現在把分的份數和表示份數都擴大2倍,就得到68。

板書:

(2)34是怎樣變化成912的呢? 怎么填?學生回答后填空。

(3)引導口述:34的分子、分母都乘以2,得到68,分數的大小不變。

(4)在其它幾組分數中,分子、分母的變化規律怎樣?幾名學生回答后,要求學生試著歸納變化規律:分數的分子和分母都乘以相同的數,分數的大小不變。

(板書:都乘以

相同的數)

(5)從右往左看,分數的分子和分母又是按照什么規律變化的?通過分析比較每組分數的分子和分母,得出:分數的分子和分母都除以相同的數,分數的大小不變。

(板書:都除以)

(6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二個“都”字,換成“或者”)再對照教科書中的分數基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規定“零除外”?

(板書:零除外)

(7)齊讀分數的基本性質。先讓學生找出性質中關鍵的字、詞,如“都”、“相同的數”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數基本性質。

3.出示例2:把12和1024化成分母是12而大小不變的分數。

思考:要把12和1024化成分母是12而大小不變的分數,分子、分母怎么變化?變化的依據是什么?

4.討論:猴王運用什么規律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?

5.質疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。

( 三)、溝通說明,揭示聯系

通過舉例,溝通分數的基本性質與商不變性質之間的聯系。引導學生運用分數與除數的關系,以及整數除法中商不變的性質,說明分數的基本性質。

如:34=3÷4=(3×3)÷(4×3)=9÷12=912

( 四)、多層練習,鞏固深化

1.口答。(學生口答后,要求說出是怎樣想的?)

2.判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數的基本性質中哪幾個字不相符。)

教學反思:

學生是學習的主人,教師是數學學習的組織者、引導者與合作者。因此數學課堂教學中必須把教師的教變成學生的學,必須深入研究學法,建立探究式的學習模式。教師應調動學生的學習積極性,向學生提供充分從事數學學習的機會,幫助他們在自主觀察、討論、合作、探究學習中真正理解和掌握基本的數學知識和技能,充分發揮學生的能動性和創造性。《分數的基本性質》的教學設計一個突出的特點就是學法的設計,從大膽猜想、實驗感知、觀察討論到概括總結,完全是為學生自主探究、合作交流的學習而設計的。具體表現在:

1、學生在故事情境中大膽猜想。

通過創設“猴王分餅”的故事,讓學生猜測一組三個分數的大小關系,為自主探索研究“分數的基本性質”作必要的鋪墊,同時又很好地激發了學生的學習熱情。

2、學生在自主探索中科學驗證。

在學生大膽猜想的基礎上,教師適時揭示猜想內容,并對學生的猜想提出質疑,激發學生主動探究的欲望。在探索“分數的基本性質”和驗證性質時,通過創設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的正確性,突現出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調學生自主參與,通過規律讓學生自主發現、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。

3、讓學生在分層練習中鞏固深化。

在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲,加深學生對分數的基本性質的認識,激發學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。

反思教學的主要過程,覺得在讓學生用各種方法驗證結論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證,而不能局限于老師提供的幾種方法。因為數學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。

分數的基本性質教學設計 14

【教學內容】:

【教學目標】:

1、使學生理解和掌握分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。

2、通過猜想、驗證、歸納、總結等活動,讓學生經歷分數的基本性質的探究過程,體會舉具體事例、數形結合的思考方法,感受抽象、推理的基本數學思想。

3、在自主探究與合作交流的過程中,感受數學知識之間的聯系,激發學生探究學習的興趣,提高學生發現問題的能力。

【教學重點】:經歷質疑、猜想、驗證、觀察、歸納的學習過程,探究分數的基本性質。

【教學難點】:理解和掌握分數的基本性質。

【教學方法】:

本節課我綜合采用了談話法,情境創設法、引導探究法、直觀演示法,組織學生經歷觀察,猜測,得出結論。

【學法指導】:

為了有效的達成上述教學目標,秉著新課程標準的精神指導,在整個教學活動中力求充分體現學數學就是做數學,數學教學就是數學活動的教學的理念,以學生為主體,以學生發展為本。在本節課教學中,我主要采用觀察發現法、動手操作法、舉例驗證法。引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數學活動經驗。

【教學準備】:

1、媒體準備:白板

2、資源準備:PPT

【資源運用】:

1、導入——課件出示問題-——喚醒舊知

2、探究新知——PPT課件——突破重點、分解難點

3、拓展延伸

【教學過程】:

一、聯系舊知,質疑引思。

1、在自然數的范圍內,可以找到兩個大小相等但各個數位上數字又都不相同的自然數嗎?

2、在小數的范圍內,可以找到兩個大小相等但各個數位上數字又都不相同的小數嗎?

3、在分數的范圍內,可以找到兩個大小相等但分子和分母又都不相同的分數嗎?

誰能說一個與《分數的'基本性質》教學設計石泉縣城關第二小學賈從先相等的分數?你怎么知道它們相等呢?如果讓你證明他們確實和《分數的基本性質》教學設計石泉縣城關第二小學賈從先相等,你準備怎么證明?

【喚醒學生已有知識經驗而且引發學生的數學思考,為主動探究新知積聚動力。】

二、自主操作,驗證猜想

1、初步驗證

(1)提出問題

誰能說一個與《分數的基本性質》教學設計石泉縣城關第二小學賈從先相等的分數?你怎么知道它們相等呢?

如果讓你證明他們確實和《分數的基本性質》教學設計石泉縣城關第二小學賈從先相等,你準備怎么證明?

(2)匯報方法

2、深入驗證:

(1)在紙上寫上一組你認為可能相等的分數;

(2)用你喜歡的方法來證明。

(3)學生操作。

(4)匯報交流。

3、概括性質,深化理解

(1)在操作的過程中,你有什么發現?分子分母怎樣變化分數的大小才不變?

(2)歸納概括,總結規律,揭示課題。

(3)根據我們以前學過的分數與除法的關系,以及整數除法中商不變的性質,來說明分數的基本性質嗎?

4、運用規律,完成例2。

(1)理解題意

(2)要把他們化成分母是12而大小不變的分數,分子應該怎么變化?變化的根據是什么?

(3)獨立完成,交流匯報

【給學生提供開放的探究空間,滿足學生的探索欲望。】

三、知識應用,鞏固提升

1、判斷

(1)分數的分子、分母同時乘以或除以一個數,分數的大小不變。

(2)兩個分數的分子、分母都不相同,這兩個分數一定不相等。

(3)《分數的基本性質》教學設計石泉縣城關第二小學賈從先的分子乘以3,分母除以3,分數的大小不變。

2、五年級有《分數的基本性質》教學設計石泉縣城關第二小學賈從先的學生參加象棋活動,有《分數的基本性質》教學設計石泉縣城關第二小學賈從先的學生參加象棋活動,有《分數的基本性質》教學設計石泉縣城關第二小學賈從先的學生參加手工活動,參加哪個小組的人數多?

3、把《分數的基本性質》教學設計石泉縣城關第二小學賈從先的分子加上10,分母怎樣變化,

才能使分數的大小不變?

四、回顧總結,完善認知

通過本節課的學習,你有什么收獲?

【教學反思】:

1、課前準備不足,我用的20xx版做的,結果上課電腦是xxxx年版本的,展臺沒有試,影響教學流程。

2、教學機智不足,沒有關注學情,總想到20分鐘的課,時間短,有些趕,知識落實不夠扎實。

3、課堂提問語言不夠準確精煉,課堂評價不夠豐富、準確。例如開課語及結束語言有歧義。

分數的基本性質教學設計 15

教學內容:人教版小學數學第十冊第107頁至108頁。

教學目標:

1、知識目標:通過教學使學生理解和掌握分數的基本性質,能利用它改變分數的分子和分母,而使分數的大小不變。

2、能力目標:培養學生的觀察能力、動手操作能力和分析概括能力等。

3、情感目標:讓學生在學習過程中養成互相幫助、團結協作的良好品德。

教學準備:長方形紙片、彩筆、各種分數卡片。

教學過程

一、創設情境,激發興趣

1.課件示故事。同學們,今天是快樂的,老師祝愿同學們節日快樂!在我們歡慶自己的節日時,花果山圣地也早已是一派節日喜慶的氣氛。

【六一節到了,猴山上張燈結彩,小猴們享受著節日的快樂。猴王給小猴們做了三塊他們愛吃的餅。它先把第一塊餅平均切成四塊,分給第一只小猴貝貝一塊。第二只小猴佳佳見到說:“太小了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給第二只小猴兩塊。第三只小猴丁丁急了,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給第三只小猴丁丁三塊。貝貝、佳佳見了,連忙說:“猴爺爺,不公平,不公平,我們要分得和丁丁的同樣多。”】

“同學們,猴王真的分得不公平嗎?”

二、動手操作、導入新課

同學們,這個故事告訴了我們什么?猜想一下猴王分得公平嗎?為什么公平?我們平常怎樣去做?讓我們也來分分看。請每組拿出課前準備的三張長方形紙片,共同來分一分,并完成操作報告(課件出示操作報告)。請小組長分工一下,明確記錄的同學。

任選一小組的同學臺前展示實驗報告,并匯報結論。

教師根據學生匯報板書:14=28=312

2.組織討論。

(1)通過操作我們發現三只猴子分得的餅同樣多,表示它們分得餅的分數是相等關系。那么,這三個分數什么變了,什么沒有變?讓學生小組討論后答出:它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。

(2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數嗎?學生通過觀察演示得出結論教師板書:34=68=912。

3.引入新課:黑板上二組相等的分數有什么共同的特點?學生回答后板書:分數的分子和分母, 分數的大小不變。雖然他們的分子和分母變化了,但是它們的大小卻不變。那么他們的分子和分母變化有規律嗎?我們今天就來共同探討這個變化規律。

三、比較歸納,揭示規律。

請每組拿出探究報告,任意選擇黑板上的二組相等分數中的一組,共同討論、探究,并完成探究報告。

1.課件出示探究報告。

2.分組匯報,歸納性質。

(1)從左往右看,分子、分母的變化規律怎樣?選擇一組學生根據探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。

(根據學生回答板書:同時乘上 相同的數)

(2)從右往左看,分數的分子和分母又是按照什么規律變化的?

(根據學生的回答板書:除以 )

(3)有與這一組探究的分數不一樣的`嗎?你們得出的規律是什么?

(4)綜合剛才的探究,你發現什么規律?

根據學生的回答,揭示課題,

(……這叫做板書:分數的基本性質)

對這句話你還有什么要補充的?(補充“零除外”)

討論:為什么性質中要規定“零除外”?

(紅筆板書:零除外)

(5)齊讀分數的基本性質。在分數的基本性質中,你認為要提醒大家注意些什么?(同時、相同的數、0除外)。為什么?你能舉例說明嗎?教師則根據學生回答,在相應的字下面點上著重號。

師生共同讀出黑板上板書的分數基本性質(要求關鍵的字詞要重讀)。

3、智慧眼(下列的式子是否正確?為什么?)

(1)35=3×25=65 (生:35的分子與分母沒有同時乘以2,分數的大小改變。)

(2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除數的大小不同,分數的大小也不同)

(3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,沒有同時乘以或除以,分數的大小不相等。)

(4)25=2×x5×x=2x5x (生:x在這里代表任何數,當x=0時,分數的大小改變。)

4、示課件討論:現在你知道猴王運用什么規律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?用分數表示為?如果要五塊呢?

三、回歸書本,探源獲知

1、瀏覽課本第107—108頁的內容。

2、看了書,你又有什么收獲?還有什么疑問嗎?

3、師生答疑。

你會運用分數與除數的關系,以及整數除法中商不變的性質,說明分數的基本性質嗎?

4、自主學習并完成例2,請二名學生說出思路。

四、多層練習,鞏固深化。

1、熱身房。35=3×()5×()=9()

824=8÷()24÷()=()3

學生口答后,要求說出是怎樣想的?

分數的基本性質

教學內容 人教課標實驗教材五年級下冊 P75 分數的基本性質

教學目標

1.讓學生通過經歷預測猜想——實驗分析——合情推理——探究創造的過程,理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系。

2.根據分數的基本性質,學會把一個分數化成用指定的分母做分母或指定的分子做分子而大小不變的分數,為學習約分和通分打下基礎。

3.培養學生觀察、分析和抽象概括的能力,滲透事物是互相聯系、發展變化的辯證唯物主義觀點。體驗到數學驗證的思想,培養敢于質疑、學會分析的能力。

教學重點 使學生理解分數的基本性質。

教學難點 讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。

教學過程

一、故事情景引入

同學們,每年的中秋節你們都會吃什么呢?對了,月餅。中秋吃月餅是我們中國傳統風俗。去年的中秋節,易老師的鄰居李奶奶家里,發生了一件有趣的事情,大家想不想知道?

好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數)你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。

同學們,你們覺得奶奶公平嗎?現在同桌之間討論一下。

討論完了請舉手。

生甲:“我覺得不公平,小紅分得多。”

生乙:“我覺得小明分得多。”

生丙:“我覺得公平,他們三個分得一樣多。”

師:“看樣子我們班的同學也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節課同學們就會明白了。”

二、新授

師:“下面我們來做個實驗。同學們請你們拿出老師為你們準備的學具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)”

請你們把這三張圓片疊起來,比一比大小,看看怎么樣?

生:“三張圓片一樣大。”

1.師: “ 下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了。”

首先,請在第一張圓片上表示出它的1/3;

再在第二張圓片上表示出它的2/6;

然后在第三張圓片上表示出它的3/9。

好了,大家動手分一分。(教師巡視指導)

2.師:“分完了的請舉手?

老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)

下面請哪位同學說一說,你是怎么分的?”

生:“把第一個圓片平均分成三份,取其中的一份,就是它的三分之一。”

生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二。”

師:“那九分之三又是怎么得到的呢?大家一起說。”

生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三。”

(學生說的同時,教師操作,分完后把圓片貼在黑板上。)

3.師:“同學們,觀察這些圓的陰影部分,你有什么發現?”

小結:原來三個圓的陰影部分是同樣大的。

師:“ 現在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)

生:“奶奶分月餅是公平的,因為他們三個分得的月餅一樣多。”

師:“現在我們的意見都統一了,奶奶是非常公平的,他們三個人分的月餅一樣多。那你覺得1/

3、2/

6、3/9這三個分數的大小怎么樣呢?”

生甲:“通過圖上看起來,這三個分數應該是一樣大的。”

生乙:“這三個分數是相等的。”

師:“剛才的試驗證明,它們的大小是相等的。”(板書,打上等號)

4.研究分數的基本規律。

師:“我們仔細觀察這一組分數,它的什么變了,什么沒變?”

生甲:“三個分數的分子分母都變了,大小沒變。”

師:“那它的分子分母發生了怎樣的變化呢?讓我們從左往右看。

第一個分數從左往右看,跟第二個分數比,發生了什么變化?”

生乙:“它的分子分母都同時擴大了兩倍。”

師:“跟第三個分數比,它又發生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。

再引導學生反過來看,讓學生自己說出其中的規律。(邊講邊板書)

教師小結:“剛才大家都觀察得很仔細,這組分數的分子分母都不同,它們的大小卻一樣,那么,分子分母發生怎樣變化的時候,它的大小不變呢?同桌之間互相說一說,總結一下,好嗎?”

學生發言

小結:像分數的分子分母發生的這種有規律的變化,就是我們這節課學習的新知識。(板題)

分數的基本性質。

5.深入理解分數的基本性質。

師:“什么叫做分數的基本性質呢?就你的理解,用自己的語言說一說。”(學生討論后發言)

師:剛才同學們都用自己的語言說了分數的基本性質,我們的書上也總結了分數的基本性質,現在請打開書看到108頁。看看書上是怎么說的,是你說得好,還是書上說得好,為什么?

齊讀分數的基本性質,并用波浪線表出關鍵的詞。

生甲:我覺得“零除外”這個詞很重要。

生乙:我覺得“同時”“相同”這兩個詞很重要。

師:想一想為什么要加上“零除外”?不加行不行?

讓學生結合以前學過的商不變的性質討論,為什么加“零除外”。

教師小結:“以三分之一這個分數為例,它的分子分母同時除以零,行嗎?不行,除數為零沒意義。所以零要除外。同時乘以零呢?我們就會發現,分子分母都為零了,而分數與除法的關系里,分母又相當于除數,這樣的話,除數又為零了,無意義。所以一定要加上零除外。”(邊講邊板書。)

三、應用

1.學了分數的基本性質到底又什么用呢?老師告訴你們,根據分數的基本性質,我們就能變魔術一樣,把一個分數變成多個跟它大小一樣,分子分母卻不同的新分數。下面就讓我們來變個魔術。

2.學生練習課本例題2,兩名學生在黑板上做。

3.學生自己小結方法。

4.按規律寫出一組相等的分數。

四.總結

這節課大家有什么收獲?

《分數的基本性質》設計思路

分數的基本性質是約分和通分的基礎,而約分、通分又是分數四則運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。因此我把學生的學習定位在自主建構知識的基礎上,建立了“猜想——試驗分析——合情推理——探究創造”的教學模式。

在課堂上,我先通過故事讓學生進入情境,然后讓學生去猜想、觀察、試驗、感悟,進而得出結論。當學生得出分數的分子、分母都乘或除以同一個數,分數的大小不變之后,再結合商不變的性質深入理解,把知識融會貫通。整個教學過程注重讓學生經歷了探索知識的過程,使學生知道這些知識是如何被發現的,結論是如何獲得的,體現了“方法比知識更重要”這一新的教學價值觀,構建了新的教學模式。

《數學課程標準》指出:“學生是學習數學的主人,教師是數學學習的組織者、引導者與合作者。”這就要求我們在教學活動中應該為學生提供大量數學活動的機會,讓學生去探索、交流、發現,從而真正落實學生的主體地位。在本節課中,我先引導學生自己動手分月餅,發現三個人分得的月餅同樣多,然后得出三個分數同樣大,再來觀察幾組分數的分子、分母發生了怎樣的變化,然后在觀察與分析中逐步感知分數的分子、分母都乘或除以同一個數,分數的大小不變。最后在概括與運用中對分數的基本性質形成了清晰的認識。每一個活動都調動學生學習的積極性,使學生主動參與到活動中,從而體現了學生的主體地位

下載分數的基本性質教學設計word格式文檔
下載分數的基本性質教學設計.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    分數基本性質教學設計

    分數基本性質 約分的教學設計 【教學內容】 蘇教版《義務教育課程標準實驗教科書數學》五年級(下冊)第62頁。 重點:分數約分的方法 難點:將分數化成最簡分數 【教學目標】 1.知識......

    分數基本性質教學設計

    《分數基本性質》教學設計 龍潭一小 陳 興 麗 一、教材簡析 《分數的基本性質》是人教版小學數學教材第十冊的內容,在小學數學學習中起著承前啟后、舉足輕重的作用,它既與......

    《分數基本性質》教學設計

    《分數基本性質》教學設計作為一名無私奉獻的老師,通常需要用到教學設計來輔助教學,借助教學設計可使學生在單位時間內能夠學到更多的知識。寫教學設計需要注意哪些格式呢?下面......

    分數基本性質的教學設計

    《分數基本性質》教學設計 教學內容:人教版新課標教科書小學數學第十冊75~77頁例1、例2. 教學目標:1知識與技能目標: (1) 經歷探索分數的基本性質的過程,理解分數的基本性質。 (2)......

    分數的基本性質教學設計

    2·3分數的基本性質(19-23頁) 一、教材分析:本節教材圍繞著分數基本性質的得出與應用,安排了兩道例題。通過例1,概括出分數基本性質。通過例2,運用、鞏固分數的基本性質。考慮到分......

    分數的基本性質教學設計

    “分數的基本性質”教學設計 教學內容: 人教版義務教育課程標準實驗教科書小學數學第十冊第75~77頁例1,練習十四第1—5題。 教學目標: 1、經歷分數基本性質的建構過程,歸納概括并......

    《分數基本性質》教學設計文檔

    《分數的基本性質》教學設計 湯西中心小學 黃海峰 教學目標設計 根據教學大綱對教材的要求,依據教學參考書對教學內容的分析和說明以及學生的年齡特征,制定了以下教學目標: 1、......

    分數的基本性質教學設計

    《分數基本性質》教學設計 教學目標:1、讓學生經歷探索分數基本性質的過程,理解分數的基本性質。 2、能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數。......

主站蜘蛛池模板: 天天做天天爱夜夜爽| 日本韩国的免费观看视频| 午夜福利院电影| 日本国产制服丝袜一区| 国产suv精品一区二区62| 久久久久国产精品人妻aⅴ毛片| 专干老肥熟女视频网站| 性高朝大尺度少妇大屁股| 黑人狠狠的挺身进入| 成年女人爽到高潮喷视频| 欧美成人伊人久久综合网| 婷婷五月综合色视频| 国产精品毛片完整版视频| 国产婷婷丁香五月缴情成人网| 苍井空一区二区波多野结衣av| 女人无遮挡裸交性做爰| av在线中文字幕不卡电影网| 午夜嘿嘿嘿在线观看| 免费人成年小说在线观看| 野花社区视频www官网| 国产亚洲精品美女久久久久| 风间由美性色一区二区三区| 中文字幕亚洲色妞精品天堂| 亚洲中文无码永久免费| 国产福利视频一区二区在线| 精品人妻中文无码av在线| 亚洲av成人精品日韩在线播放| 天天爽天天爽天天片a| AV一区二区三区| 最近免费中文字幕| 波多野av一区二区无码| 大肉大捧一进一出好爽视频| 麻豆 美女 丝袜 人妻 中文| 四虎国产精品永久在线| 中国老熟女重囗味hdxx| 国产精品人人做人人爽| 后入内射国产一区二区| 2019精品国自产拍在线不卡| 天天综合亚洲色在线精品| 插插无码视频大全不卡网站| 2020最新无码国产在线观看|