第一篇:基于數學文化的高職數學教育改革論文
2014年6月,國務院召開了改革開放以來的第3次全國職業教育工作會議,期間,國務院頒布了《關于加快發展現代職業教育的決定:(以下簡稱《決定》),這標志著職業教育發展進人了新的歷史階段.2015年8月,以《決定》為指導,教育部出臺了《關于深化職業教育教學改革全面提高人才培養質量的若干意見》(以下簡稱《若干意見》)無論是《決定》,還是《若干意見》,都強調職業教育必須以加強學生思想道德、人文素質教育作為辦學指導思想,將立德樹人、全面發展作為辦學原則,將加強文化基礎教育、傳統文化教育作為人才培養的根本任務.并明確指出,公共基礎課應注重學生文化素質、科學素養、綜合職業能力和可持續發展能力培養,強調應把中華優秀傳統文化融入教學,將職業道德、人文素養教育貫穿人才培養全過程.這不僅為職業教育的人才培養指明了方向,也對公共基礎課程的教學改革提出了要求.作為高職教育重要基礎學科之一的高職數學,如何順應時代潮流,在高職教育中更好實現育人價值,為學生職業生涯的持續發展貢獻力量,這是擺在每位高職數學教育者面前的首要任務.本文將以數學文化為視角,在數學文化教育觀指導下,結合高職數學教育實踐,對高職數學教育教學改革問題進行研究.1.髙職數學教育的現狀和問題
當前,高職數學教育及其研究與迅猛發展的高等職業教育形勢不相協調,主要表現在以下幾方面:
1.1對數學教育目的和意義缺乏合理認識
人們通常將高職數學狹隘地理解為一種科學的語言和工具,忽視了其思想方法和人文精神價值.教師在教學過程中,仍以理論知識灌輸為主,強調學生對數學定義、公式、算法的記憶和機械套用,而不是通過尋找數學知識與數學文化的交匯點來激發學生的學習興趣,讓學生真正體會到數學帶來的趣味與快樂.導致學生對數學學習產生畏懼心理,喪失信心和學習興趣,數學教育的價值與功能沒能得到應有的發揮.1.2教學模式陳舊
由于高職學生數學基礎普遍較差、數學授課學時數量偏少等原因,教師為完成數學教學任務,不得不沿襲傳統教學模式,講授內容的選擇上刪繁就簡,主要以數學定義、公式和運算為主,與專業和實際問題的聯系非常有限,更談不上數學知識與數學思想、精神和方法的融合,很難實現數學文化育人目標.1.3數學文化傳播渠道有限
在高職數學教育仍以知識教育觀為主導的前提下,數學文化的傳播受到自覺與不自覺的影響.一是在高職數學課堂上,教師在講授數學知識時,往往忽視了其中蘊含的數學思想、精神和方法;在學習數學定理、公式和法則時,也忽略了與之相關具有很好育人效果的數學史、數學家典故的引人.二是采取以數學文化公選課方式提高學生數學素質的高職院校也是不多見的.1.4數學教師專業素養存在一定差距
回顧當前高職數學教師的職業生涯,大多接受的是以學科知識為主的普通大學數學教育,缺乏高職教育基本理論和方法的系統培訓,也缺乏數學文化知識的系統學習.在高職教學重實踐,輕理論;重專業,輕基礎的背景下,基礎課教師職后的專業技能知識培訓機會遠不如專業課程教師,基礎課程改革環境與氛圍也不及專業課程.因此,數學教師教學理念和教學方法與現代職業教育要求相去甚遠,導致數學課堂缺乏對學生的吸引力和感染力.這些問題導致學生缺乏對數學的總體印象與宏觀把握,以至于學習了十幾年的數學仍不了解數學的精髓,不清楚數學帶給今后工作和學習的價值.日本教育家米山國藏曾說過,學生進人社會后如果沒有什么機會應用初中或高中所學的數學知識,通常在出校門一兩年內就會忘掉這些數學知識.然而不管他們從事什么工作,那些銘刻在大腦中的數學思想方法和數學精神會長期在他們的生活和工作中發揮作用.因此,真正的數學教育是學生將所學的數學知識忘卻后所剩的數學思維和數學素養.這些是需要將數學文化與數學知識相融合的長期數學教育實踐來實現的.2.數學文化的內涵及特征
2.1數學文化的內涵
關于數學文化的內涵,學術界至今雖沒有一個公認的定義,但不同的學者分別從數學學科、文化、數學共同體、數學活動、系統等多種不同的角度對數學文化的內涵均有深人研究.在此,不妨采用南開大學顧沛教授從文化屬性的角度給出數學文化狹義和廣義的兩種解釋,即狹義的數學文化,是指數學的思想、精神、方法、觀點,以及它們的形成和發展;廣義的數學文化,除上述內涵外,還包含數學家、數學史、數學美、數學教育、數學發展中的人文成分,數學與社會的聯系,數學與各種文化的關系等.由此可見,數學文化是指一群人(數學家),當他們從事數學活動時,遵守共同的數學規則,經過長期的,歷史的沉淀,形成了許多關于數學知識、數學精神、思想方法和思維方式等的共同約定,這些共同約定的總和就是數學文化.2.2數學文化的特征
2.2.1思想性數學文化的精髓來源于數學思想,數學文化的思想性表現在數學文化能深刻反映出數學家對大量數學事實與理論經過創造性思維活動后所呈現出的本質認識.數學史上,無論是函數思想和方程思想等傳統數學思想,還是建模思想和極限思想等現代數學思想,它們共同推動著人類思維的進步,也不斷豐富著數學文化的內涵發展.2-2.2人文性數學文化中蘊含著數學家、數學史、數學美、數學教育和數學發展等豐富的人文元素,數學文化的人文性表現在透過數學文化的學習,不僅有助于領悟如何做一個追求真、善、美的人,如何在探索真理途中協調人與人、人與自然、人與社會的關系,還能幫助吸納數學文化中所蘊涵著的豐富的人文精神,進而得以滋潤靈魂,陶冶情操,提升人生境界,形成健全人格,最終實現數學育人目標.2.2.3藝術性所謂數學文化的藝術性是指數學文化在反映社會生活和表達思想感情時所呈現出的美好程度,不僅可從其語言、結構和表現方法上得以體現,還可以透過多種形式的數學美呈現出來.數學美主要表現在它的統一性、簡潔性、對稱性、協調性和奇異性上M如數學語言公式的簡潔美、幾何圖形和變換中的對稱美以及數學與其他學科統一并創新過程中表現出的奇異美等,無不詮釋了數學美.2.2.4應用性廣義而言,數學與社會的聯系以及與文化的關系共同組成了數學文化,數學文化的應用性主要通過數學應用的廣泛性表現出來.數學不僅被廣泛地應用于其他學科,而且還推動著新學科的誕生與發展?
3.高職數學教育改革的思考
3.1以數學文化為先導,樹立數學文化教育觀
高職教育的蓬勃發展為我國高等教育大眾化趨勢奠定了基礎,高職教育肩負著為國家經濟社會建設發展中培養大批高素質、高技能人才的重要使命.當前職業教育在立德樹人為根本,fl艮務發展為宗旨,促進就業為導向的思想指導下,高職數學教育也應順應高職教育人才培養目標要求,以數學文化的思想性、人文性、藝術性和應用性為先導,樹立將數學知識傳授與數學文化教育融合、科學素養與人文素養相貫通的高職數學教育觀,使高職數學教育過程變成真正意義上的培養全面發展的高素質勞動者的過程.因此,高職數學教育要樹立突出文化理念的高職數學教育觀,不僅要具有使學生掌握和運用數學知識的功利性功能,而且要具有使學生受到良好的數學思想方法的熏陶,提高學生數學文化素養等素質教育的功能.3.2以數學文化為素材,創新數學教學模式
數學文化蘊含著古今中外豐富的數學思想、精神和方法以及背后大量生動的數學家、數學史和數學美的故事,這些為實施高職數學教育提供了廣泛素材.不能照搬普通大學里的數學學科知識體系,而是要在充分把握高職學生生源實際和適應學生未來可持續發展的基礎上,構建知識、能力、素質三位一體的高職數學教學目標和內容體系,以數學文化的思想性、人文性、藝術性和應用性指導高職數學教育教學模式創新.教師在講授數學的定義、公式和算法等數學知識時,注意融入數學文化的豐富內涵和古今中外一些數學家的探索、創新的精神以及數學文化形成和發展中的數學思想、精神和方法等,進而啟發和培養學生的創造力、藝術力、想象力和意志力等良好的心理品質.同時,還要注意數學知識在專業知識中的廣泛應用,有針對性地解決專業中的問題,實現數學教育與專業教育的良性結合.此外,教師的教學方法也應改變傳統的“黑板+粉筆”方式,適當引人多媒體和互聯網等先進教學手段,適當采取討論式、案例式、項目式和模塊化等多樣化教學方法,適當引人反映數學家和數學史的專題記錄片及影視作品,使學生在學習過程中,能更深切地感受數學家的魅力,將對數學文化的體驗與個人成長密切聯系,更好地理解數學文化意蘊,理解數學文化與諸多文化的交匯,使數學學習過程變得生動而豐富多彩,從而激發數學學習興趣.融于數學文化的高職數學教學模式創新的目的在于讓學生感受到生活中處處有數學,人人可以學數學;在于創建大眾數學教育而非精英數學教育環境,真正實現數學教育面向人人的價值目標.3.3以數學文化為載體,拓寬數學教育渠道
五千多年的數學文明史證明,數學既是一門至高無上的科學,也是一門在生命科學、經濟學、管理學、心理學和政治學等領域離不開的通用技術,還是一種人類文明進步史中不可或缺的文化,更是一種促進人類思維發展到完美程度的理想精神.高職數學教育的目的,就是要讓學生在接受數學知識的過程中,體驗到數學文化的豐富內涵,在科學精神與人文精神相融合的學習過程中,提升學生科學素養和人文素養,促進學生全面發展.在當前高職教育更加倡導人文素質教育的背景下,高職院校應不斷拓寬以數學文化為載體的數學教育渠道,充分發揮數學文化的育人價值和功效.不僅要在普遍開設的高職數學必修課堂上,將數學文化與高職數學教學結合起來,用文化吸引學生的學習興趣,打通工具性與人文性鏈接的淤滯,實現工具性的數學課程充滿人文氣息,讓學生帶著情商與智商親近數學,更應積極探索數學文化選修課的教學實踐,讓學生進一步感受到數學對人類文明和歷史發展的貢獻,進一步得到數學文化的思想性、人文性、藝術性和應用性的熏陶,以提高學生的數學素養和人文素養.3.4以數學文化為核心,提升數學教師專業素養
高職數學教師的專業素質主要表現在以科學的教育觀和高職教育理論為指導,根據學生專業實際和本學科知識結構特點,運用有效的教學方法與手段,創設適宜的育人教學環境,激發學生的學習潛能,實現教學目標.實現高職數學文化育人觀的關鍵在于教師應具有豐富的數學文化知識和較高的教育藝術水平.數學教師專業化水平的高低直接關乎數學教育質量,并且教師專業素質的提升,也是高職數學教育改革的需要,而提高數學教師專業素質的途徑在于提升其數學文化素養.因此,無論是高職院校相關部門還是數學教師本身,都應將數學文化納人數學教師專業化發展的必修內容.高職數學教育過程中,可以將數學文化與數學知識相互融合,在講授大學數學的抽象定義、定理和公式之前,引入相關數學史和數學家的故事;在進行數學推理和演算之前,揭示出其蘊含的數學思想、精神和方法;在遇到隱含在數學圖形、性質之中的或對稱、或簡潔、或奇異的數學美時,應直觀地呈現出來;在專業領域應用時,應將數學不可替代的工具價值表現出來等,讓學生在數學課堂上,通過知識的學習去感受數學文化的人文性、思想性、藝術性和應用性,在提升數學素養同時提升人文素養,去實現一名數學教師的理想教學目標.4.總結與展望
數學教育涵蓋了數學知識與數學文化兩個方面,數學知識主要是指數學中的公式、公理和法則等,以物質形式表現數學,而數學文化則以隱性的方式反映數學'二者對人類產生的影響不盡相同.而培養學生獨立人格、自由思想遠比知識灌輸更重要.當數學文化真正地滲人教材,到達課堂,融人教學時,數學就會通過文化層面讓學生進一步理解、喜歡和熱愛數學,而這些數學思想將會使學生終生受益.在未來的高職數學教育中,如何將數學文化的思想性、人文性、藝術性和應用性與高職數學知識自然而有機的融合,如何通過開設數學文化公選課來提高學生的數學素質、文化素質和思想素質,均將成為高職數學教育者未來研究的課題.
第二篇:數學文化論文
數學文化
論文題目:數學文化與人類文明
學院:經濟管理學院
專業:工商管理
學號:2134031755
姓名:丁岳鳳
數學文化
引言
在當今社會,科學技術正以迅猛的勢頭強烈地影響、滲透并沖擊著人類社會幾乎所有的領域,數學與數學技術是其中最強勁的浪潮之一。在新技術革命和信息革命中,數學理論與技術起著十分重要的作用。縱觀人類科學與文明發展的歷史,我們可以發現:數學一直是人類文明發展的主要文化力量,同時人類文化的發展又極大地影響了數學的進步。按照現代數學研究,數學文化可以表述為以數學科學為核心,以數學的思想、精神、方法、內容等所輻射的相關文化領域為有機組成部分的一個具有特定功能的動態系統,其基本要素是數學及與數學有關的各種文化現象。數學文化研究開展以來,數學的抽象、確定、繼承、簡潔、統一的文化屬性和滲透、傳播、應用、預見的功能特征被挖掘出來,數學的藝術性也深深吸引了人們的眼球。本文就是著重研究數學文化與人類文明的聯系,發掘數學的文化功能。關鍵詞:
數學,數學文化,數學教育,人類文明 1.數學文化的內涵
數學作為一種文化現象,早已是人們的常識。歷史地看,古希臘和文藝復興時期的文化名人,往往本身就是數學家。最著名的如柏拉圖和達·芬奇.近代,愛因斯坦、希爾伯特、羅素、馮·諾依曼等都是 20 世紀數學文明的締造者。“廣義的文化概念強調的是文化對人類創造活動的依賴性。數學對象終究不是物質世界中的真實存在,從這個意義上說,數學就是一種文化。狹義的文化概念強調的是文化對人的行為、觀念、態度、精神等的影響。”①數學除了在科學技術方面的應用外,其在精神領域的功效,特別是在對人類理性精神方面的影響也是有目共睹的。作為一種人類的理性精神,作為理性精神最有力的倡導者和體現者,今天數學已在一定程度上滲透到以前由權威、習慣和風俗所統治的領域,成為人們思想和行動的先導之一。某些數學成果如無理數和非歐幾何的發現所產生的精神方面的影響,并不亞于對數學本身產生的影響,它們對認識論、倫理觀乃至人生觀都產生了巨大的影響。因此,在這種意義上說,數學還是一種文化。
按照現代數學研究,廣義地講,數學文化可以表述為以數學科學為核心,以數學的思想、精神、方法、內容等所輻射的相關文化領域為有機組成部分的一個具有特定功能的動態系統,其基本要素是數學及與數學有關的各種文化對象。2.數學文化與一般人類文化、科學文化
數學文化有與一般人類文化的共性,因為它既是人類文化的組成部分,也是人類文化發展的產物,都有對人類智力、美學和道德方面培養的功能。但數學文化有與一般人類文化相比又具有特殊性,即數學文化的個性:數學有自己獨一無二的語言—數學語言,數學具有獨特的價值判斷標準一一數學認識論和真理觀。這使得數學不僅與文學、藝術有很大差別,而且與科學(包括自然科學和社會科學)也有著巨大的不同。從社會學的角度看,數學還具有獨特的發展模式。這些獨特的個性,一 方面使數學自身構成了一種獨立的文化體系,同時也使數學與一般人類文化有本質的區別。
數學文化與科學文化也有著本質的不同,從學科分類中數學與自然科學的關系可以說明這一點。歷史上,數學曾經是哲學的一個分支,亞里士多德護Jistotle)將數學放在關于純知識學問的理論哲學中,歐洲中世紀的學者也將數學作為哲學的分支放在神學類之下。古希臘早期的數學家都是哲學家,中國先秦對數學有貢獻的數學家也均是哲學家(如管子、老子、莊子、墨子等)。直到文藝復興時期,培根.F(Bacno)
數學文化
才把數學化歸在自然科學的實用部分,認為數學是研究自然的工具。18世紀法國數學家達朗貝爾(J.Dalembe)rt明確地把數學放在自然科學之內,由此在理論上數學是自然科學的一個門類。但隨著19世紀以后的日趨抽象化,數學在研究內容與研究方法上與自然科學有了越來越大的區別,學術界已不再將數學看作自然科學的一部分了。正如著名科學家錢學森所闡明的,數學已經與自然科學和社會科學相并列,成為一個獨立的學科。這一新的劃分標準適應了現代數學的發展要求,對于理解數學文化的本質有很大幫助。數學文化或許與科學文化有交叉重疊部分,但數學文化絕不簡單是科學文化的一部分。數學作為聯結自然科學與人文、社會科學的紐帶,扮演著溝通文理、兼容并蓄、彌合裂痕的文化使者角色。3.數學的藝術特征(1)數學的藝術性
用美學的原則衡量數學,使得數學本身成為具有特定美學性質的藝術。
數的美妙性質令探尋的人折服;幻方、魔方神秘的美令人震顫;黃金分割使藝術家們創作出令人贊嘆的作品;永無休止的莫比烏斯圈,四葉玫瑰線同樣吸引著人們的目光,帶給人們無盡的美的享受。數學追求的目標是,從混沌中找出秩序,使經驗升華為規律,將復雜還原為基本,所有這些都是美的標志,而進行數學創造的最主要的動力就是對美的追求。法國數學家阿達瑪(J.Hndamard)說:數學家的美感猶如一個篩子,沒有它的人永遠成不了數學家。可見,數學美感和審美能力是進行一切數學研究和創造的基礎。
阿根廷《21 世紀趨勢》周刊網站報道,挪威卑爾根大學的數學家和心理學家首次證明,美是發現真理的源泉,無論是對美感還是對真理的判斷,都取決于大腦思維處理的流暢性。卑爾根大學數學家羅爾夫·雷伯用數學實驗證明了這一推斷。在實驗中專家發現,人們使用對稱性來作為檢驗算術結果是否正確的指標。對稱性被視為是美的代表。結合此前在數學認知和直覺判斷領域的研究,科學家指出,人的直覺判斷可能受某種與美感有關的機制指揮,至少在解決簡單數學問題時是這樣的。
(2)數學與音樂
在我們現行的教育體制中,數學與音樂似乎處在了兩個極端的位置,數學讓學生感到疲勞、辛苦,音樂讓學生感到輕松、愉快,而這樣的兩門科目之間卻有剝離不開的聯系。
事實上,早在公元前 6 世紀,畢達哥拉斯就發現了數學與音樂間的比率關系。即一根拉緊的弦,取原長的 1/2 可彈出八度音調,取 2/3 可彈出五度音調,取 3/4可彈出四度音調,也就是說音調的和諧由弦長與標準弦長的比決定。通過試驗,他創造了畢達哥拉斯八弦里拉理論,而后,他又發現弦的長度和振動數比例構成逆數形態,經過計算創造出了畢達哥拉斯音階理論,也是現在西方音樂的雛形。
對于數學與音樂兩者之間關系的研究,從數學的觀點看,最高成就應當屬于法國數學家傅立葉,他讓我們了解了音樂聲音的本質以及聲音本質所具有的數學特征。傅立葉證明了所有的聲音,無論是噪音還是儀器發出的聲音,復雜的還是簡單的聲音,都可以用數學方式進行全面的描述。聲音的本質包括音高、音調和音色,表現在數學函數圖上則是波的振幅、頻率和形狀。這樣一來,任何復雜的聲音實際都能用音叉一樣的簡單聲音經過適當的組合完全表現出來,也就是說從理論上講,我們完全可以僅利用音叉就演奏出一曲由一個樂團才可以完成的交響樂。音樂聲音的數學分析具有十分重大的意義,電話就是這種分析的產物之一,現在的數學文化
樂器制造商還將樂器的聲音轉化為波形圖,然后比較這些圖形與理想圖形的匹配程度進而判斷產品的優劣。(3)數學與美術
數量、形狀和結構是數學研究的內容,也是美術繪畫所要表現的對象,它們將數學與美術聯系在一起,可以說,滲透了數學內容的美術作品更加具有感染力、親和力,更能給人舒適、愉悅的感受。將三維空間的物象真實生動地表現在二維的畫紙上是繪畫的基本功——素描。通過對物象的形體結構、比例關系、明暗變化等因素的觀察綜合表現物象則需要透視理論。透視是制造繪畫空間感、立體感的主要手段,將平面視覺提升為三維,很大程度上決定了作品“型”的準確性。15 世紀意大利畫家阿爾貝蒂(L.B.Alberti)著書《繪畫論》,專門敘述了繪畫的數學基礎,論述了透視的重要性,他認為數學是認識自然的鑰匙,希望畫家們能夠通曉幾何學。文藝復興時期,經過眾多畫家、建筑師、工程師的共同努力,繪畫透視學產生了,素描藝術也得到了空前的發展。黃金分割是數學術語,同時也是藝術家的摯愛,因為可以給人最舒適、最愉悅、最美麗的感受,像黃金一樣珍貴,故稱黃金分割,它就像一把金鑰匙,靈動地活躍在藝術殿堂的每一處。繪畫顏料的黃金配比能夠使色澤更自然,繪畫布局中黃金分割處的亮點能夠突出畫的鮮活,雕塑結構的黃金比例使作品更美麗,建筑物黃金分割處的裝飾能夠平添建筑的靈氣??如果說對稱給人以視覺精確平衡的美感,那么黃金分割則給人心理張弛平衡的美感,更讓人著迷、神往,所以
世界聞名的藝術珍品大多可以看到黃金分割的影子。(4)數學與文學
數學與文學的同一性來源于人類兩種基本思維方式——藝術思維與科學思維的同一性。文學是以感覺經驗的形式傳達人類理性思維的成果,而數學則是以理性思維的形式描述人類的感覺經驗。文學與數學的統一歸根結底是在符號上的統一,數學揭示的是隱秘的物質世界運動規律的符號體系,而文學則是揭示隱秘的精神世界的符號體系。五言、七言詩共有十六種格式,平仄變化十分復雜,但從數學的角度理解,卻具有簡單的運算規律,只需知道第一句的平仄格式就可推斷后面所有的格式。
數學語言中的量與序的概念和文字的結合能產生無窮的文學魅力,深化時空意境,使得文學作品更加引人入勝。例如“飛流直下三千尺,疑是銀河落九天”,借助數字表現出對高度的藝術夸張;“千山鳥飛絕,萬徑人蹤滅”,用數字體現尖銳的對比和襯托;卓文君的數字家書“一別之后,兩地相思,只說是三四月,又誰知五六年,七弦琴無心彈,八行書無可傳,九連環從中拆斷,十里長亭望眼欲穿。百思想,千系念,萬般無奈把郎怨??”從一寫到萬,又從萬寫回一,情感遞進,心思巧妙,悲憤之意躍然紙上;華羅庚的妙對“三強韓趙魏,九章勾股弦”隱喻嵌入,對仗工整,令人拍案叫絕。對文學作品的語言研究也應用了大量的數學原理,形成了數理語言學,包括統計語言學、代數語言學、計算語言學和模糊語言學等分支。運用統計學、概率
論、信息論統計某種語言詞匯出現的頻率和概率可以確定這種語言的基本詞匯;根據幾部作品的詞匯、詞頻統計,經過計算可以大致推定作者的詞匯總量;對于作者不詳的文獻可以根據詞匯的使用頻率經過計算繪制成圖形以判斷作品的風格、年代,找出文獻的主人。語言學的發展對數學不斷提出新的要求,借助數學手段精確客觀的分析必將使語言學的研究呈現新面貌。4.數學的作用
數學文化
(1)數學喚醒人類理性精神 數學的本質是邏輯的,數學關注的是邏輯上的必然性而不是偶然性,當人們討論數學問題的時候,探求的是具有普遍意義的必然結果。古希臘哲學家柏拉圖在論及數學的這一屬性時便說:這門科學的真正目的在于探究關于永恒事物的知識,而不是關于某種有時產生有時滅亡的具體事物的知識。美國當代著名數學哲學家斯圖爾特·夏皮羅(Stewart Sharpiro)也說:“數學至少表面上與其他求知的努力不同,特別是與科學追求的其他方面不同。基本數學命題似乎沒有科學命題的偶然性”。夏皮羅的這一說法實際上與柏拉圖是一致的,在他們看來,數學不是一門有關任何具體事物的知識,而是超越一切具體存在物的永恒的知識。
(2)數學促進人類思想解放
在以往有關數學史和文化史的研究中,人們更多注意到的是數學與自然科學之間的關系,但卻很少談到數學史與思想史之間的聯系。事實上,數學的發展與人類思想的發展有著密切的相關性,甚至可以說,在歷史上,這種相關性遠遠超過了自然科學對思想史的影響。思想解放,顧名思義就是解除思維禁錮,發展思想觀念的一種創新活動。無論是過去還是現在,思想解放對社會發展、經濟繁榮、政治文明都有巨大的社會功能。數學家齊民友說:“歷史已經證明,而且將繼續證明,一種沒有相當發達的數學的文化是注定要衰落的,一個不掌握數學作為一種文化的民族也是注定要衰落的。數學作為一種文化,在過去和現在都大大地促進了人類思想的解放。與發展生產力、發展經濟相比,人類思想的轉變和解放是更漫長、更困難的過程,同時,生產力、經濟等的發展又受到人類思想意識的制約。可以推翻一時的壓迫、一時的政權,但思想意識上的迷信和偏見卻不是容易解除的。人是理性的存在者,人類社會的歷史所以能夠不斷地從野蠻走向文明,就是因為人類在長期的生產活動中,通過知識的積累,不斷地提高自己的認識能力,從而形成理性的生活態度。理性地對待生活是人類所特有的品質。知識和理性是思想解放的前提,只有掌握知識、掌握真理才能擺脫思想的桎梏、精神的枷鎖。此種意義下,數學在人類思想解放的歷史中發揮了至高無上的作用。(3)數學改善人類生活
數學深刻滲透到科學研究領域的方方面面早已成為不爭的事實,從大的方面講,數學發展促進科學技術的進步,進而大大促進了社會生活的進步。從小的方面講,掌握數學知識、領會數學思想使我們具有解決問題的能力,很大程度上有助于改善生活方式、提高生活質量。用容易計算的數簡化計算過程,根據需要確定向上或向下的估計方式是這個案例的中心思想,這就是估算。估算是對情況的一種整體把握,是對事物的直覺判斷,進而對事物的發展前景和結果進行判斷,洞察事物本質,具有很大的靈活性和變通性。計算稅款、均攤消費、估計占地面積等都可以使用類似的方法簡化計算。
結束語
數學文化研究站在人類文化與文明的高度反思數學的本質,使我們對數學有更高層次的理解。隨著科學研究的發展與進步,數學已經空前廣泛地滲入到數學以外的其他學科和我們的生活。數學的起源、發展、完善和應用的過程對于人類產生重大的影響,既包括對人類生產生活方式的改變,也包括對人的觀念、思想和思維方式的潛移默化的作用,同時體現了人類在探索、認識真理過程中展現的精神和崇高境界。人類無論在物質生活上和精神生活上都大大得益于數學,所以,數學的教育價值不只在于科學,還在于人文。成功的數學教育應當同時體現出數學
數學文化 的應用價值、思維價值、精神價值。教育是國之根本,歷來都是重要議題。應對復雜的經濟局面,要提升中國在國際社會中的競爭力,讓中國真正地發展騰飛,就必須全面提升人的素養。數學文化的研究引導我們重新思考數學的本質,重新認識數學教育,重新樹立數學教育的目標和思考數學課程的建設。從全面提升人的素質角度出發,重視數學文化教育勢在必行。
參考文獻
[1] Kroeber A & Kluckhohn C.Culture: A critical Review of concepts and Definitions[M].New York:Random House,1954.[2](美)塞繆爾·亨廷頓.文明的沖突與世界秩序的重建[M].北京:新華出版社,2005.[3] 范森林.中國政治思想的起源[M/OL].http://www.tmdps.cn/zhongxin/.[10](美)莫里斯·克萊因.古今數學思想(第一冊)[M].上海:上海科學技術出版社,2002.[11]鄭毓信.數學方法論[M].南寧:廣西教育出版社,2001.[12]張維忠.數學:喪失了確定性嗎?[J]自然辯證法研究,1998,14(11).[13]郭光華,常春艷,王小燕.試論數學的文化特性[J].par 數學教育學報,2005,14(3):25-27.[14]蔣嵐.論數學美[J].溫州職業技術學院學報,2003,3(2):38-42.[15]楊毅.論體育數學與體育科學[J].衡陽師范學院學報,2002,23(3):95-96.[16]數學地質四川省高校重點實驗室,http://www.tmdps.cn/list_view.php?sid=1
[17]林履端.《易經》與模糊數學[J].閩江學院學報,2002,22(2):116-118.
第三篇:數學文化欣賞論文
主題:數學文化
數字的神奇
姓名:楊晨 學院:經管-土管院 班級:土規1102 學號:2011306200619
摘要:在現實世界中,大到宇宙星系,小至生物微粒及人類所處事宜都散發著數學的氣息。而數字作為數學的重要組成部分,伴著人類的發展直至今日。經過無數學者對數字的研究與探索,發現了數字獨有的魅力。
關鍵字:數學 數字 走馬燈數 黃金分割率 神奇
正文:
數字,美妙且神奇,不僅吸引了眾多科學家、文學家、藝術家們,讓他們大為感嘆,投身其中,還有眾多對數字有著獨特感覺的普通人,他們認為“8”代表著“發”,意味著發財致富,“6”則代表六六大順。或許,僅是這樣并不足以看出它對人們的吸引力究竟有多大,但是,以下的例子卻足以調足你的胃口,引發你的好奇,讓你贊嘆它的美妙,驚嘆它的神奇。
神奇的數----142857 142857,又名走馬燈數。它發現于埃及金字塔內,它是一組神奇數字,它證明一星期有7天,它自我累加一次,就由它的6個數字,依順序輪值一次,到了第7天,它們就放假,由999999去代班,數字越加越大,每超過一星期輪回,每個數字需要分身一次,你不需要計算機,只要知道它的分身方法,就可以知道繼續累加的答案。
142857×1=142857(原數字)142857×2=285714(輪值)142857×3=428571(輪值)142857×4=571428(輪值)142857×5=714285(輪值)142857×6=857142(輪值)
142857×7=999999(放假由9代班)
142857×8=1142856(7分身,即分為頭一個數字1與尾數6,數列內少了7)142857×9=1285713(4分身)142857×10=1428570(1分身)142857×11=1571427(8分身)142857×12=1714284(5分身)142857×13=1857141(2分身)
142857×14=1999998(9也需要分身變大)繼續算下去??
以上各數的單數和都是“9”。而且,同樣的數字,只是調換了位置,反復的出現。如果把它乘與7,我們會驚人的發現是 999999,然后,142 + 857 = 999 14 + 28 + 57 = 99,挑三段 1+8 4+5 2+7 都等于9 若我們把142857再乘于142857,結果是142857x142857=20408122449 再把20408122449分解兩組數字,20408和122449,而他們的和正是142857。
黃金分割率
15世紀末期,法蘭圖教會的傳教士路卡·巴喬里(LUCAPACIOLI)發現金字塔之所以能屹立數千年不倒,且形狀優美,原因在于其高度與基座每邊的結構比例為“5:8”。因為有感于這個神秘比值的奧妙與價值,而使用了黃金一詞,將描述此比例法的書籍命名為“黃金分割”。
數百年來,一些學者專家陸續發現,包括建筑結構、力學工程、音樂藝術,甚至于很多大自然的事物,都與“5:8”比例近似的0.382和0.618這兩個神秘數字有關:
5/(5+8)=0.3846 8/(5+8)=0.6154 而由于0.382與0.618這兩個神秘數字相加正好等于1,所以,將“0.382”及“0.618”的比率稱之為“黃金分割率”或“黃金切割率”。
其實,黃金分割比在未發現之前,在客觀世界中就存在的,只是當人們揭示了這一奧秘之后,才對它有了明確的認識。當人們根據這個法則再來觀察自然界時,就驚奇的發現原來在自然界的許多優美的事物中的能看到它,如植物的葉片、花朵,雪花,五角星??許多動物、昆蟲的身體結構中,特別是人體中更是有著豐富的黃金比的關系。當人們認識了這一自然法則之后,就被廣泛地應用于人類的生活之中。此后,在我們的生活環境中,就隨處可見了,如建處門窗、櫥柜、書桌;我們常接觸的書本、報紙、雜志;現代的電影銀幕。電視屏幕,以及許多家用器物都是近似這個數比關系構成的。它特別表現藝術中,在美術史上曾經把它作為經典法則來應用。有許多美術家運用它創造了不少不朽的名著。
你從電視中見過碧水輕流的安大略湖畔的加拿大名城多倫多嗎?這個高樓大廈鱗次櫛比的現 代化城市中,最醒目的建筑就是高聳的多倫多電視塔,它器宇軒昂,直沖云霄。有趣的是嵌 在塔中上部的扁圓的空中樓閣,恰好位于塔身全長的0.618倍處,即在塔高的黃金分割點上。它使瘦削的電視塔顯得和諧、典雅、別具一格。多倫多電視塔被稱為“高塔之王”,這個 奇妙的“0.618”起了決定性作用。與此類似,舉世聞名的法蘭西國土上的“高塔之祖”——埃菲爾鐵塔,它的第二層平臺正好坐落在塔高的黃金分割點上,給鐵塔增添了無窮的魅力。
氣勢雄偉的建筑物少不了“0.618”,藝術上更是如此。舞臺上,演員既不是站在正中間,也 不會站在臺邊上,而是站在舞臺全長的0.618倍處,站在這一點上,觀眾看上去才愜意。我們所熟悉的米洛斯的“維納斯”、“雅典娜”女神像及“海姑娘”阿曼達等一些名垂千古的 雕像中,都可以找到“黃金比值”——0.618,因而作品達到了美的奇境。
達·芬奇的《蒙娜麗莎》、拉斐爾筆下溫和俊秀的圣母像,都有意無意地用上了這個比值。因為人體的很多部位,都遵循著黃金分割比例。人們公認的最完美的臉型——“鵝蛋”形,臉寬與臉長的比值約為0.618,如果計算一下翩翩欲仙的芭蕾演員的優美身段,可以得知,他們的腿長與身 長的比值也大約是0.618,組成了人體的美。
總而言之,黃金律歷來被染上瑰麗詭秘的色彩,也被人們稱為“天然合理”的最美妙的形式比例。
兩個簡單的例子、幾頁紙的文字是無法言說數字的奧妙,數學的神奇的。這些并不是巧合,這是人類智慧的結晶,更是人類對美的追求,不僅是對表象的美的追求,更是對學術中美的熱愛。數學很美,數字很神奇,是不可置否的。然而它與我們的學習、生活又是那樣密切,難道這些還不足以成為我們熱愛它的理由嗎?
參考書目及網站:
《數學文化欣賞》鄒庭榮編著 《數學中的美》吳振奎 《數學發展史》普羅克魯斯
黃金分割http://baike.baidu.com/view/52401.htm 142857 http://baike.baidu.com/view/812117.htm
第四篇:高職數學實驗教學探索教育論文
【摘要】數學實驗的目的是以實驗為載體,展示數學的探索發現過程,使學生親歷這個過程,從中發現數學、體驗數學、理解數學、運用數學。開設數學實驗是數學科學發展的需要,是高職院校培養目標的需要,是數學教學改革的需要。它有助于提高學生的創新能力和實踐能力的培養。
【關鍵詞】數學實驗;數學課程;數學軟件
1“數學實驗”的背景
多少年來人們心目中的數學就是它的抽象與難懂,以及它的嚴密的推理和證明,是屬于純理論的范疇。數學活動只是高度的抽象思維活動,使人望而生畏。20世紀下半葉以來,隨著社會的發展,科學技術的更新,數學發生了重大變化,它已經不僅僅是一種純理論訓練思維的載體,或其它學科進行表達的工具,而是從一種基礎理論轉變為可以直接產生經濟效益的技術,加之與計算機技術的完美融合,計算機的使用數學只用紙和筆進行研究的傳統方式,改變了數學的性質,數學正在成為一門“實驗科學”。
“數學實驗”是近幾年來才開設的一門新興課程,泛指學生在教師指導下應用現代計算機技術和數學應用軟件(如Mathematica、Mathcad、Matlab等)學習數學,進行數學模型的求解。通過“引例→知識→軟件→范例→實驗(實踐)”的教學過程,以實際問題為載體,將數學建模、數學知識、數學軟件和計算機應用有機地結合起來。它特別強調學生的主體地位,在教師的引導下,學習查閱文獻資料、用學到的數學知識和計算機技術,借助適當的數學軟件,分析、解決一些經過簡化的實際問題,并撰寫實驗報告或論文,經受全方位的鍛煉。這項新事物是對數學教學體系、內容和方法改革的又一嘗試。
20世紀70年代末,我國數學家吳文俊從中國傳統的數學機械化思想出發,創立了幾何定理機器(計算機)證明的“吳方法”,實現了利用計算機進行推理證明的突破,獲得了國內外學術界的高度稱贊與廣泛重視,他因此獲我國首屆重大科技成果獎。1989年美國的MountHolykeCollege數學系于在本科的教學計劃中,增加了一門大學二年級水平的導引性課程──數學實驗室。施普林格出版社出版了該大學編寫的《數學實驗室》一書。1995年,國家教育部“高等教育面向21世紀教學內容和課程體系改革”計劃中,課題組提出在大學開設“數學實驗”課程。從這以后,一些知名大學率先開設了“數學實驗”,如北京大學、上海交通大學等。2000年8月教育部高教司全國高等學校教學研究中心編的《高等數學改革研究報告(非數學類專業)》正式出版,書中明確闡述了數學實驗課在數學教學體系中應有的地位、作用及建議,講授的內容和方法。在這樣的背景下,國內的一些傳統的教科書如高等數學、微積分等都引入了許多數學實驗的內容。這時,不但本科院校在積極創造條件開設數學實驗課,高職院校也不落后,紛紛將這項改革付諸實踐。
高職教育人才培養目標要求教學必須突出實用性,強調學生的動手能力。要求教學過程與社會實踐過程的高度符合與統一。“數學實驗”課程恰能很好地體現這高職教育的特點。將數學應用到自然科學和社會科學的各個領域。經濟學、金融學、社會學等都涉及到許多數學問題。“數學實驗”就是用數學解決這些問題必不可少的工具。
于是在2005年底,學院也成立了“數學實驗課程建設初探”課題組,開始了“數學實驗”課程的實踐與建設。
2“數學實驗”的過程
2.1課程的目的與組織模式
“數學實驗”課程的目的就是以實驗為載體,展示數學的探索發現過程,使學生親歷這個過程,從中發現數學、體驗數學、理解數學、運用數學,既獲得數學知識,又養成探索能力、非邏輯思維能力。課程的教學目的從兩個方面來體現。首先是加強“用數學”的教育,一方面指導學生學習較實用的數學軟件包Mathematica及Mathcad、Matlab等數學軟件,從而對高數、線代、概率統計等教材中涉及的導數運算、積分計算、圖像及數據處理、級數解法、矩陣運算及回歸分析等內容在微機上得以求解和處理;更主要的是培養學生利用數學理論在計算機上實現對有生產、生活實際背景問題的解決。使學生動手、動眼、動腦、,更有效、更主動地提高“用數學”的能力。由于課程要突出體現數學的實用性及計算機在解決問題中的重要作用。因此我們的每一節課都在建立描述問題的數學模型,應用所學的數學知識去解決問題。其次是將數學教學與現代教育技術結合起來,充分利用計算機技術、網絡技術,以及成功的數學軟件,培養學生進行數值計算和數據處理的能力。這正是新的數字時代對應用性人才所提出的要求。
由于“數學實驗”課程需要一定的數學基礎知識作依托,因此基本上定位于大
二、大三的學生。故面向04、05級學生開設“數學實驗”選修課,每周四課時,大多數都在計算機房上課,便于上機實驗。講課與實驗的學時比一般為1:2。
教材采用高職高專《應用高等數學》教材中的數學實驗部分內容,及教研室老師根據建筑行業的實際編寫的《數學實驗講義》。
實踐證明:一直以來由于內容多、負擔重、理論性強、苦燥乏味,且學生的數學基礎參差不齊,學習積極性不高,困擾著高職數學教學的現象,通過“數學實驗”,有了一定改變。現在的“數學實驗”由學生自己動手,用他們熟悉的、喜歡“玩”的計算機去做數學,并用數學解決幾個經過簡化的實際問題。讓學生親身感受到了用所學的數學知識解決實際問題的快感,大大激發了他們的學習積極性。“數學實驗”不僅給了學生一種全新的感覺,加深了對所學知識的理解,提高了學習能力,也為今后在工作崗位上運用數學解決實際問題打下了一定的基礎。
2.2課程的內容與實施方法
“數學實驗”的內容大多選自高等數學、線性代數、概率統計等數學課程。將實際問題經淺化、簡化、線性化處理之后,最終歸結為較為簡單的形式,其內容的深度和廣度上通常介于常規數學課程與數學建模之間,是數學應用教學的過度性內容。通過數學實驗,可以使學生對運用數學知識解決實際問題的過程有一個初步的了解。“數學實驗”課特別強調學生的動手能力,使學生以更直觀、更真切的方式感受課堂上聽起來枯燥的數學理論與數學原理,對實驗內容有更好的理解和掌握,這種新視覺、新感受會極大地激發學生學數學的興趣與熱情。所以我們“數學實驗”課程的主要內容歸納起來大致可分為三個部分。
一是基礎理論,結合已經學過的高等數學知識,再適當補充介紹一些最常用的解決實際問題的數學方法。如微分方程、數值計算、優化方法、數理統計、圖論與組合等,只講這些內容中的基本原理和算法,不講證明,也不做紙上作業。二是基礎實驗,選擇Mathematica、Matlab作為數學軟件平臺,熟悉其符號、指令,圍繞高等數學的基本內容,讓學生充分利用計算機及軟件的數值功能和圖形功能展示基本概念與結論,初步體驗數學軟件的強大實用性,如解方程、求極限、求導、求積分、求解微分方程等等。三是綜合實驗,結合學生自身專業進行專業課的數學實驗。以專業實際為背景,縱向引入問題、引出方法,并落實于問題的解決,(如象建筑結構的可靠度的分析與計算,不規則圖形的面積計算,土方的計算等)。讓學生利用已掌握的實驗知識,獨立利用計算機去編程、去計算并注重解決問題的多樣性。這方面的訓練將極大地提高數學知識應用于專業知識的能力。讓學生體驗從實際問題——數學模型——解決問題——實驗報告的數學實驗全過程。這種實驗對培養學生的創新思維,提高專業技能具有直接的意義。
“數學實驗”的期末考試與通常的高等數學考試有也完全不同,全部采用無紙化形式,在計算機房進行,時間兩個小時,在電腦上完成并提交。考試內容由兩部分組成,一是基礎題以檢驗學生運用數學軟件,通過計算機進行高等數學的計算;二是應用題以檢驗學生運用數學知識解決實際問題的能力。
3開設“數學實驗”的收獲與體會
3.1有助于激發學生的學習興趣
“數學實驗”從問題出發,拋開抽象的數學定義、定理的推導證明,不追求內容的系統性、完整性,而講究處理問題的過程與總結出的規律,只需將復雜的公式和方程變為有限的操作程序,即可得到各種需要的數值結果,而這些結果的取得也許用傳統的計算方法需要花費十倍甚至幾十倍的時間才能解決。對于數學基礎較薄弱,怕數學,又不太愿學數學等情況較嚴重的高職學生來講,在通過電腦成功地求解了數學問題的時候,使他們享受到了久違了的成功喜悅。為自己也能進入數學的微妙世界,感到新奇與興奮,一掃以前矮人一頭的自卑感,然后以更大的熱情投入到新的數學知識的學習中去。讓學生在感嘆數學奇妙的同時,提高了學習興趣,促進了對數學的深刻理解。并在實際問題的解決中對社會責任增加一份凝重和對自身的能力平添一份信心。
“數學實驗”面向問題的學習方法激發了學生的自信心和求知欲,學生不僅會重新拾起以前學過的知識,而且還自發地找有關書籍,去學習以前課中沒有學到的以及其它學科的專業知識,然后去嘗試完成新的實驗,去經受成功的磨練,從而促進數學與其它專業課程之間的交叉互融,開闊了學生的眼界,達到愛學習,主動學習的目的。
3.2有利于培養學生的創新能力
學生在“數學實驗”課程中的學習由過去被動接受轉為主動參與,由以前做書本中的習題變化為做自己設計的問題。讓學生真正從一個旁觀者和聽眾變成一個主導者,有利于學生學習積極性的發揮及獨立思考問題和解決問題能力的鍛煉。由于實驗任務具有多樣性,因此學生可以選擇任務的一部分,或者全部來完成,學生還可以改變實驗的任務,提出設想,提出條件,在新的設想和條件下完成任務。因此有利于學生創新意識和創造能力的培養。
3.3是高職院校數學教學改革的需要
中央職業教育工作會議及《教育部關于加強高職高專教育人才培養工作的意見》中明確指示:“高職高專教育是我國高等教育的重要組成部分,培養擁護黨的基本路線,適應生產、經營、管理、服務第一線需要的德、智、體、美等方面全面發展的高等技術應用性專門人才;學生應在具備必要的基礎理論知識和專業知識的基礎上,重點掌握從事本專業領域實際工作的基本能力和基本技能,具有良好的職業道德和敬業精神。”
高等職業教育不同于普通高等教育,其區別主要體現在培養目標和培養模式上。高等職業教育是為基層和生產第一線培養技能型、實用型的人才。在人才培養上,堅持以“能力為中心”的培養模式,強調職業性與適應性。重點強化學生的動手能力,突出實踐。“數學實驗”能促進數學教學改變原有的從概念定理出發進行理論教學的模式,轉向加強數學知識的應用能力的培養。提高學生自覺地應用數學知識解決實際問題的能力,能夠有效地促進學生基本技能和專業技術水平的提高。
毋庸置疑,開設數學實驗是高職院校數學教學改革的需要,是適應高職院校培養目標的需要。
第五篇:數學思想與文化論文
淺談數學與文化與思想的教育作用
摘要:數學文化與思想對教師、學生的教學和學習有重要的作用。數學文化主要包括數學史,數學美,數學思想等。本文主要從數學文化與思想的概念和教學作用這兩方面論述數學文化與思想對數學教學的促進作用。
關鍵詞:數學文化 數學思想 教學 教育 作用 正文:
一、數學思想與文化的概念
“數學思想”作為數學課程論的一個重要概念,我們完全有必要對它的內涵與外延形成較為明確的認識。關于這個概念的內涵,我們認為:數學思想是人們對數學科學研究的本質及規律的理性認識。這種認識的主體是人類歷史上過去、現在以及將來有名與無名的數學家;而認識的客體,則包括數學科學的對象及其特性,研究途徑與方法的特點,研究成就的精神文化價值及對物質世界的實際作用,內部各種成果或結論之間的互相關聯和相互支持的關系等。可見,這些思想是歷代與當代數學家研究成果的結晶,它們蘊涵于數學材料之中,有著豐富的內容。通常認為數學思想包括方程思想、函數思想、數形結合思想、轉化思想、分類討論思想和公理化思想等。這些都是對數學活動經驗通過概括而獲得的認識成果。既然是認識就會有不同的見解,不同的看法。
數學文化,不只是數學本身,它更是一種文化。文化即人文,即人的精神。數學不只是關于數學的世界、形的世界或更廣闊世界的科學,數學還是一門充滿人文精神的科學。最早系統提出數學文化觀的是美國學者懷德爾(R.Wilder,1896——1982),他認為數學是一個由于其內在力量與外在力量共同作用而處于不斷發展和變化之中的文化系統。數學文化即由數學傳統及數學本身組成[1]。張奠宙教授指出:“數學文化是什么樣子呢?就是人人喜愛數學,在公眾當中樹立美好的數學形象”。他認為數學文化的含義是“在特定的社會歷史下,數學團體和個人在從事數學活動時,說現示的民族特征、傳統習慣、規則約定、以及思想方法等的總和。豐富多彩的數學文化,以符號化、邏輯化、形式化的數學體系為載體,隱形地存在著”。黃秦安教授:“從系統的觀點看,數學文化可以表述為以數學科學體系為核心,以數學的思想、精神、知識、方法、技術、理論等所輻射的相關文化領域為有機組成部分的一個具有強大精神與物質功能的動態系統”[3]。所以數學文化不僅僅包括數學史,數學美,而且包括數學思想。
二、數學思想與文化的作用
數學是人類文明的產物和重要組成部分,也是推動社會發展的動力。數學雖然屬于自然學科領域,但是它與社會科學有著密切聯系。隨著社會的不斷進步和教育的快速發展,數學文化這一概念逐漸被納入了大眾的數學觀念體系并在高等教育中占有重要的地位。數學文化精神即是反映了科學與人文最為本質的精神的整合: 理性精神、求實精神和創新精神,也是科學與人文從分野走向融合的必然結果。通過數學學習,培養學生的理性精神,求實精神、創新精神,既是使學生具有和樹立科學人文精神的重要途徑和方法,也是培養學生科學人文精神的重要內容。因此,數學文化精神對于培養大學生的綜合素質具有十分重要的意義。
1.數學文化對提升大學生綜合素質的積極作用 數學學科并不是一系列的技巧。這些技巧只不過是它微不足道的方面: 它們遠不能代表數學, 就如同調配顏色遠不能當作繪畫一樣。技巧是將數學的激情、推理、美和深刻的內涵剝落后的產物。數學在形成現代生活和思想中起重要作用。數學一直是形成現代文化的主要力量。任何一門學科都有它的教育功能,而數學文化觀下數學的教育功能中除了教會學生掌握這門工具之外,還通過數學文化對學生進行其他方面的培養,使學生學會怎樣做人,怎么立足社會。因此,數學文化對提升大學生綜合素質具有積極的作用。
2.數學的美提升了學生對學習數學的興趣,擴展了知識視野 數學是人類悠久歷史的知識寶庫之一,從發端于四大文明古國的“數”的研究,到古希臘突出了“形”的研究,數學便成為關于數與形的研究,直到17世紀,數學研究的內容沒有發生本質的變化;17 世紀開始,數學開始發生了重大轉折,至18 世紀,牛頓和萊布尼茲制定的微積分本質上是運動與變化的科學,從而使數學成為研究數、形以及運動與變化的學問;19 世紀恩格斯論述了數學的本質:“純數學的對象是現實世界的空間形式與數量關系”,從而將數學定義為是研究現實世界的空間形式與數量關系的科學。直至現在,數學的內涵雖然已經大大擴展和深化了,但恩格斯的說法仍是有效的。
2.數學思想的作用
(一)數學思想深刻而概括,富有哲理性 各種各樣的具體的數學思想,是從眾多的具體的個性中抽取出來且對個性具有普遍指導意義的共性。它比某個具體的數學問題(定理法則等)更具有一般性,其概括程度相對較高。現實生活中普遍存在的運動和變化、相輔相成、對立統一等“事實”,都可作為數學思想進行哲學概括的材料,這樣的概括能促使人們形成科學的世界觀和方法論。
(二)數學思想富有創造性
借助于分析與歸納、類比與聯想、猜想與驗證等手段,可以使本來較抽象的結構獲得相對直觀的形象的解釋,能使一些看似無處著手的問題轉化成極具規律的數學模型。從而將一種關系結構變成或映射成另一種關系結構,又可反演回來,于是復雜問題被簡單化了,不能解的問題的解找到了。如將著名的哥尼斯堡七橋問題轉化成一筆畫問題,便是典型的一例。當時,數學家們在作這些探討時是很難的,是零零碎碎的,有時為了一個模型的建立,一種思想的概括,要付出畢生精力才能得到,這使后人能從中得到真知灼見,體會到創造的艱辛,發展頑強奮戰的個性,培養創造的精神。
(三)數學思想是教材體系的靈魂 從教材的構成體系來看,整個初中數學教材所涉及的數學知識點匯成了數學結構系統的兩條“河流”。一條是由具體的知識點構成的易于被發現的“明河流”,它是構成數學教材的“骨架”;另一條是由數學思想方法構成的具有潛在價值的“暗河流”,它是構成數學教材的“血脈”靈魂。有了這樣的數學思想作靈魂,各種具體的數學知識點才不再成為孤立的、零散的東西。因為數學思想能將“游離”狀態的知識點(塊)凝結成優化的知識結構,有了它,數學概念和命題才能活起來,做到相互緊扣,相互支持,以組成一個有機的整體。可見,數學思想是數學的內在形式,是學生獲得數學知識、發展思維能力的動力和工具。教師在教學中如能抓住數學思想這一主線,便能高屋建瓴,提挈教材進行再創造,才能使教學見效快,收益大。
(四)數學思想是我們進行教學設計的指導思想
筆者認為,數學課堂教學設計應分三個層次進行,這便是宏觀設計、微觀設計和情境設計。無論哪個層次上的設計,其目的都在于為了讓學生“參與”到獲得和發展真理性認識的數學活動過程中去。這種設計不能只是數學認識過程中的“還原”,一定要有數學思想的飛躍和創造。這就是說,一個好的教學設計,應當是歷史上數學思想發生、發展過程的模擬和簡縮。例如初中階段的函數概念,便是概括了變量之間關系的簡縮,也應當是滲透現代數學思想、使用現代手段實現的新的認識過程。又如高中階段的函數概念,便滲透了集合關系的思想,還可以是在現實數學基礎上的概括和延伸,這就需要搞清楚應概括怎樣的共性,如何準確地提出新問題,需要怎樣的新工具和新方法等等。對于這些問題,都需要進行預測和創造,而要順利地完成這一任務,必須依靠數學思想作為指導。有了深刻的數學思想作指導,才能做出智慧熠爍的創新設計來,才能引發起學生的創造性的思維活動來。這樣的教學設計,才能適應瞬息萬變的技術革命的要求。靠一貫如此設計的課堂教學培養出來的人才,方能在21世紀的激烈競爭中立于不敗之地。
(五數學思想是課堂教學質量的重要保證
數學思想性高的教學設計,是高質量進行教學的基本保證。在數學課堂教學中,教師面對的是幾十個學生,這幾十個智慧的頭腦會提出各種各樣的問題。隨著新技術手段的現代化,學生知識面的拓寬,他們提出的許多問題是教師難以解答的。面對這些活潑肯鉆研的學生所提的問題,教師只有達到一定的思想深度,才能保證準確辨別各種各樣問題的癥結,給出中肯的分析;才能恰當適時地運用類比聯想,給出生動的陳述,把抽象的問題形象化,復雜的問題簡單化;才能敏銳地發現學生的思想火花,找到閃光點并及時加以提煉升華,鼓勵學生大膽地進行創造,把眾多學生牢牢地吸引住,并能積極主動地參與到教學活動中來,真正成為教學過程的主體;也才能使有一定思想的教學設計,真正變成高質量的數學教學活動過程。有人把數學課堂教學質量理解為學生思維活動的質和量,就是學生知識結構,思維方法形成的清晰程度和他們參與思維活動的深度和廣度。我們可以從“新、高、深”三個方面來衡量一堂數學課的教學效果。“新”指學生的思維活動要有新意,“高”指學生通過學習能形成一定高度的數學思想,“深”則指學生參與到教學活動的程度。有思想深度的課,能給學生留下長久的思想激動和對知識的深刻理解,在以后的學習和工作中,他們可能把具體的數學知識忘了,但數學地思考問題的方法將永存。我們進行數學教學的根本目的,是通過數學知識和觀念的培養,通過一些數學思想的傳授,要讓學生形成一種“數學頭腦”,使他們在觀察問題和提出問題、解決問題的每一個過程中,都帶有鮮明的“數學色彩”,這樣的數學一定會有真正的實效和長效,真正提高人的素質。