第一篇:蘇教版六年級下冊《圓柱的體積》教學反思
(一)
本節可的教學內容是九年義務教育六年級下冊的《圓柱的體積》,以前教學此內容時,直接告訴學生:圓柱的體積=底面積×高,用字母表示公式:V=Sh,讓學生套公式練習;我教此內容時,不按傳統的教學方法,而是采用新的教學理念,讓學生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:
一、學生學到了有價值的知識。
學生通過實踐、探索、發現,得到的知識是“活”的,這樣的知識對學生自身智力和創造力發展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學生在自己艱苦的學習中發現并從學生的口里說出來的這樣的知識具有個人意義,理解更深刻。
二、培養了學生的科學精神和方法。
新課程改革明確提出要“強調讓學生通過實踐增強探究和創新意識,學習科學研究的方法,培養科學態度和科學精神”。學生動手實踐、觀察得出結論的過程,就是科學研究的過程。
三、促進了學生的思維發展。
傳統的教學只關注教給學生多少知識,把學生當成知識的“容器”。學生的學習只是被動地接受、記憶、模仿,往往學生只知其然而不知其所以然,其思維根本得不到發展。而這里創設了豐富的教學情景,學生在興趣盎然中經歷了自主探究、獨立思考、分析整理、合作交流等過程,發現了教學問題的存在,經歷了知識產生的過程,理解和掌握了數學基本知識,從而促進了學生的思維發展。
本節課采用新的教學方法,取得了較好的教學效果,不足之處是:由于學生自由討論、實踐和思考的時間較多,練習的時間較少。
(二)
圓柱的體積一課,重點是體積公式的推導。公式導出后,如何進行計算應用。
教學中學生存在的問題是:
1、學生對推導過程理解有困難,不深入;
2、在計算的過程中,單位名稱用錯,體積單位用面積單位。
3、對于書中所給的立體圖形,認識不到位,不能正確分辨直徑、半徑以及圓柱的高,做題出錯。圓柱的高也可以叫做圓柱的長(個別學生不清楚)
突破難點的方法:
1、為了避免單位名稱的錯誤,可在課前復習中設計單位換算的填空題,辨析題等。例如:1平方米=()平方分米=()平方厘米100平方厘米=1立方分米。
2、在學生利用學具理解公式的推導過程時,應放手讓學動手動腦自己解決,但動手之前一定要把任務布置清楚,讓孩子們自己發現圓柱與長方體各部分之間的關系,從而推導出圓柱的體積公式。
3、注意引導學生參與到探索知識的發生發展過程中,突破以往數學學習單
一、被動的學習方式,關注學生的實踐活動和直接經驗,“通過自己的活動”獲得情感、能力、智力的全面發展。小學階段,操作活動是數學活動的重要組成部分,也是學生學習活動的重要方式。
(三)讓學生真正成為活動的主動者,才能讓學生真正的感受自己是學習的主人。在圖形的教學中,根據學習內容的特點,注重操作,注重實踐,可以讓教學達到最高效。
就正如探究圓錐體積計算方法的學習過程,學生可以不再是實驗演示的被動的觀看者,而是參與操作的主動探索者,真正成為學習的主人。在整個學習過程中,學生獲得的不僅是新活的數學知識,同時也獲得了更多的是探究學習的科學方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學習中,學生會逐步變的有思想、會思考、會逐漸發現自身的價值。同時,在操作與實踐的過程中讓一些學習困難的學生也有參與的興趣,讓他們也能感受數學學習的快樂,使他們懂得他們也可以通過玩掌握到數學的知識。
讓每個學生都經歷“猜想估計---設計實驗驗證---發現算法”的自主探究學習的過程,在教師適當的引導下給于學生根據自己的設想自由探究等底等高的圓錐體和圓柱體體積之間的關系,圓錐體體積的計算方法。讓每個學生都經歷一次探究學習的過程。同時對于學習困難的學生該學習方法也是降低了他們對知識的掌握的難度。
出現了驗證等底等高的圓錐體和圓柱體體積的方法。涌現出了對圓錐體體積計算公式中“1/3”的不同理解,實現了學習策略的多樣化,豐富了學生的學習資源。雖然學生的學習用具是固定的,但是他們所采用的方式卻是不一樣的。這也證明了學生是有著各自不同的思維方式的。
第二篇:六年級數學下冊《圓柱體積》教學反思
優點:
我采用多媒體的直觀教具相結合的手段,在圓柱體積公式推導過程中指導學生充分利用手中的學具、教具,學生在興趣盎然中經歷了自主探究、獨立思考、分析整理、合作交流、總結歸納等過程,發現了教學問題的存在,經歷了知識產生的過程,理解和掌握了數學基本知識,從而促進了學生的思維發展。這樣學生親身參與操作,有了空間感覺的體驗,也有了充分的思考空間。這樣設計我覺得能突破難點,課堂效果很好。
不足:
由于學生的學具有限,在很大程度上阻礙了學生主動探究的欲望和動手操作的能力,加上本人能力有限,語言組織能力不是很好,使課堂氣氛不是那么活躍,課堂顯得有些壓抑
再教設想:
在課的設計上以學生為主、發揮學生的主體作用,要充分展示學生的思維過程,在學生動手實踐、交流討論和思考的時間上教師應合理把握。
第三篇:六年級數學下冊《圓柱的體積》教學反思
六年級數學下冊《圓柱的體積》教學反思
六年級數學下冊《圓柱的體積》教學反思
《圓柱的體積》一課是在學生已經學習了“圓的面積計算”和“長方體、正方體的體積”及圓柱的相關知識的基礎上教學的。
教學時我注重引導學生經歷“類比猜想 驗證說明”的探索過程。由于圓柱和長方體都是直柱體,長方體的體積是底面積×高,因而我引導學生猜想圓柱的體積是否也可以用底面積×高來計算。接著引導學生想辦法證明自己的猜想,也就是驗證說明。重視學生已有的經驗,是新課改教學的重要理念,因而我引導學生回憶以前學習的“把未知的問題轉化為已知的問題”的方法,即“怎樣把圓柱轉化成已知的形體”的問題。大部分學生都能想到把“圓柱轉化成長方體”,接著就“怎樣將圓柱轉化成長方體”這個問題,讓他們觀察、研究、討論。學生受到以前“圓的面積”推導過程的啟發,都知道應把圓柱平均分成若干份切開,拼成近似的長方體。由于學生沒有學具,因此我用教具演示整個過程,然后引導學生思考:長方體底面的長相當于圓柱底面的什么?(周長的一半即π r)長方體底面的寬相當于圓柱底面的什么?(圓的半徑r)再根據長方體的面積公式推導出圓柱體積公式V=π r2 × h或V=S×h。這樣讓學生親身經歷知識的形成過程,為學生的主動探索與發現提供了空間。
我覺得本課比較成功的一點是學生除了掌握本課的知識點外,還懂得了“類比猜想 驗證說明”的數學思想方法,可以說是既授之于“魚”,又授之于“漁”。
第四篇:關于人教版六年級下冊《圓柱的體積》教學反思
(1)
本節可的教學內容是九年義務教育六年級下冊的《圓柱的體積》,以前教學此內容時,直接告訴學生:圓柱的體積=底面積×高,用字母表示公式:V=Sh,讓學生套公式練習;我教此內容時,不按傳統的教學方法,而是采用新的教學理念,讓學生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:
一、學生學到了有價值的知識。
學生通過實踐、探索、發現,得到的知識是“活”的,這樣的知識對學生自身智力和創造力發展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學生在自己艱苦的學習中發現并從學生的口里說出來的這樣的知識具有個人意義,理解更深刻。
二、培養了學生的科學精神和方法。
新課程改革明確提出要“強調讓學生通過實踐增強探究和創新意識,學習科學研究的方法,培養科學態度和科學精神”。學生動手實踐、觀察得出結論的過程,就是科學研究的過程。
三、促進了學生的思維發展。
傳統的教學只關注教給學生多少知識,把學生當成知識的“容器”。學生的學習只是被動地接受、記憶、模仿,往往學生只知其然而不知其所以然,其思維根本得不到發展。而這里創設了豐富的教學情景,學生在興趣盎然中經歷了自主探究、獨立思考、分析整理、合作交流等過程,發現了教學問題的存在,經歷了知識產生的過程,理解和掌握了數學基本知識,從而促進了學生的思維發展。
本節課采用新的教學方法,取得了較好的教學效果,不足之處是:由于學生自由討論、實踐和思考的時間較多,練習的時間較少。
(2)
圓柱的體積一課,重點是體積公式的推導。公式導出后,如何進行計算應用。
教學中學生存在的問題是:
1、學生對推導過程理解有困難,不深入;
2、在計算的過程中,單位名稱用錯,體積單位用面積單位。
3、對于書中所給的立體圖形,認識不到位,不能正確分辨直徑、半徑以及圓柱的高,做題出錯。圓柱的高也可以叫做圓柱的長(個別學生不清楚)
突破難點的方法:
1、為了避免單位名稱的錯誤,可在課前復習中設計單位換算的填空題,辨析題等。例如:1平方米=()平方分米=()平方厘米100平方厘米=1立方分米。
2、在學生利用學具理解公式的推導過程時,應放手讓學動手動腦自己解決,但動手之前一定要把任務布置清楚,讓孩子們自己發現圓柱與長方體各部分之間的關系,從而推導出圓柱的體積公式。
3、注意引導學生參與到探索知識的發生發展過程中,突破以往數學學習單
一、被動的學習方式,關注學生的實踐活動和直接經驗,“通過自己的活動”獲得情感、能力、智力的全面發展。小學階段,操作活動是數學活動的重要組成部分,也是學生學習活動的重要方式。
第五篇:圓柱體積教學反思
讓課堂留下學生的痕跡
——《圓柱的體積》教學反思
“圓柱的體積”這節課是在學生已經學習了“圓的面積計算”、“長方體的體積”、“正方體的體積”、“圓柱的認識”等相關的形體知識的基礎上教學的。本節課主要內容是圓柱的體積公式的推導及其應用。因為公式的推導過程是個難點,因此在教學設計時,我采用新的教學理念,讓學生自己動手實踐、自主探索與合作交流,在實踐中體驗,幫助學生理解公式的來源,從而獲得知識。結合本節課的教學實際,反思如下:
一、讓學生在主動參與中學習新的知識。動手實踐、自主探究、合作交流是《新課程標準》所倡導的數學學習的主要方式。在探究圓柱體積的過程中,我從本班學情出發,大膽放手讓學生猜想“圓柱體積大小可能與什么有關,可能怎樣計算,為什么?”,然后再結合以往學習幾何圖形的經驗,回顧圓的面積推導過程,實現知識遷移,明確“轉化”思想在數學研究中的重要意義。為了讓學生直觀感受到圓柱體轉化為長方體的過程,我較好地借助實物模型和多媒體課件演示,把二者有機結合,先讓小組四個學生上臺操作演示,然后再課件動態模擬,在學生充分觀察的基礎上,小組討論交流:當圓柱體轉化成近似的長方體后什么變了,什么沒變?長方體的底面積與圓柱的底面積有什么關系?長方體的高與圓柱的高有什么關系?從而得出結論:圓柱。