《圓柱的體積》教學(xué)反思1
【學(xué)習(xí)目標】
1、探索并掌握圓柱的體積計算公式。
2、能運用公式計算圓柱的體積,并解決實際問題。
【學(xué)習(xí)過程】
一、板書課題
師:同學(xué)們,今天我們來學(xué)習(xí)“圓柱的體積”(板書課題)。
二、出示目標
本節(jié)課我們的目標是:(出示)
1、探索并掌握圓柱的體積計算公式。
2、能運用公式計算圓柱的體積,并解決實際問題。
了達到目標,下面請大家認真地看書。
三、出示自學(xué)指導(dǎo)
認真看課本第19頁到第20頁的例5和例6的內(nèi)容,重點看圓柱體積公式的推導(dǎo)過程和例6解題過程,想:
1、圓柱的體積公式是如何推導(dǎo)出來的?
2、圓柱的體積計算公式是什么?用字母如何表示?
5分鐘后,比誰能做對檢測題!
師:認真看書自學(xué),比誰自學(xué)的最認真,自學(xué)效果最好。下面自學(xué)競賽開始。
四、先學(xué)
(一)看書
學(xué)生認真看書,教師巡視,督促人人都在認真地看書。
(二)檢測(找兩名學(xué)生板演,其余生寫在練習(xí)本上)
第20頁“做一做”和第21頁第5題。
要求:1、認真觀察,正確書寫,每一步都要寫出來。
2、寫完的同學(xué)認真檢查。
五、后教
(一)更正
師:寫完的同學(xué)請舉手。下面,請大家一起看黑板上這些題,發(fā)現(xiàn)問題的同學(xué)請舉手。(由差-中-好)
(二)討論
1、看第1題:認為算式列對的請舉手?
【圓柱的體積=底面積×高】
2、看第2題:認為算式列對的舉手?你是怎么思考的?
3、看計算過程和結(jié)果,認為對的舉手?
4、評正確率、板書,并讓學(xué)生同桌對改。
今天你們表現(xiàn)實在是太好了,老師真為你們感到高興。老師這里有幾道練習(xí)題,敢不敢來試一試?(出示)
六、補充練習(xí):
1、一個圓柱形鋼材,底面積是30立方厘米,高是60厘米,體積是多少立方厘米?
2、一個圓柱體和一個長方形的體積相等,高也相等,那么它們的底面積。
3、把一個圓柱的側(cè)面展開,得到一個正方形,圓柱的底面半徑是5厘米,這個圓柱的高是()厘米,體積是()立方厘米。.
下面,我們就來運用今天所學(xué)的知識來做作業(yè),比誰的課堂作業(yè)能做得又對又快,字體還又端正。
七、當(dāng)堂訓(xùn)練(課本練習(xí)三,第21頁)
作業(yè):第3、4、7、8題寫作業(yè)本上
練習(xí):第1題寫書上,第2、6、9、10題寫練習(xí)本上
八、板書設(shè)計
課題三:圓柱的體積
圓柱的體積=底面積×高
課后反思:
本節(jié)課的教學(xué)內(nèi)容是九年義務(wù)教育六年級下冊的《圓柱的體積》,我教此內(nèi)容時,不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:
一、學(xué)生學(xué)到了有價值的知識。
學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的這樣的知識具有個人意義,理解更深刻。
二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。
新課程改革明確提出要“強調(diào)讓學(xué)生通過實踐增強探究和創(chuàng)新意識,學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。
三、促進了學(xué)生的思維發(fā)展。
傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。
本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實踐和思考的時間較多,練習(xí)的時間較少。
《圓柱的體積》教學(xué)反思2
《圓柱的體積》不僅要讓學(xué)生掌握圓柱體積的計算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長方體正方體的體積計算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示課件:等底等高的長方體、正方體、圓柱,學(xué)生通過觀察,作出猜測:(1)圓柱的體積等于長方體和正方體的體積。(2)圓柱的體積也等于底面積乘高。猜測是否準確呢?點燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用教具驗證圓柱轉(zhuǎn)化成長方體過程,并討論思考:這個圓柱體與轉(zhuǎn)化后的長方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長方體的長是圓柱的底面周長的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長的一半×底面半徑×高。我沒有否定她的回答,接著又讓學(xué)生動手實踐操作,讓學(xué)生發(fā)現(xiàn)長方體與圓柱之間的聯(lián)系,利用圓的周長和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。
為了培養(yǎng)學(xué)生解題的靈活性,進行分層練習(xí),拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。
在本節(jié)課的教學(xué)過程中還存在諸多的問題。
1、演示圓柱的體積的時候,因為學(xué)生手中沒有學(xué)具,教師教具的局限性,演示時后面的學(xué)生看不清楚。
2、在圓柱體經(jīng)過切割、拼接之后轉(zhuǎn)化為近似長方體
的時候,應(yīng)多給后進生留有觀察、討論的時間,他們的思維反應(yīng)能力比其他學(xué)生較慢,應(yīng)給于他們一定的空間和時間,讓后進生也積極參與到課堂的學(xué)習(xí)中,使全班同學(xué)共同進步。
3、在解決實際問題的時候,不僅要注重公式的應(yīng)用,還要注意計算能力的培養(yǎng)。
《圓柱的體積》教學(xué)反思3
本節(jié)課為練習(xí)課,目的在于鞏固學(xué)生前面幾個課時的學(xué)習(xí)內(nèi)容和發(fā)現(xiàn)學(xué)生存在的一些問題,然后及時調(diào)整或補充教學(xué)方案。本節(jié)課在教學(xué)過程中,發(fā)現(xiàn)學(xué)生存在的問題主要有:學(xué)生對圓柱的側(cè)面展開圖的相關(guān)知識理解不深入;在計算的過程中,單位名稱用錯,如體積單位寫成面積單位;對于某些實際問題不能正確分辨圓柱直徑、半徑以及圓柱的高,導(dǎo)致做題出錯。對于這些問題,我們可以通過以下方法來突破:
第一,我們在集中講解時可穿插一些單位換算的練習(xí)等,從而避免學(xué)生誤用單位名稱;
第二,在計算以長方形的一邊為軸旋轉(zhuǎn)得到的圓柱體積和計算直接將長方形卷成的圓柱體積之前,我們可先組織學(xué)生自己動手操作、觀察比較,讓學(xué)生們自己發(fā)現(xiàn)圓柱與長方體各部分之間的關(guān)系。
總而言之,我們在引導(dǎo)學(xué)生參與到探索知識的發(fā)生、發(fā)展過程中,應(yīng)注重突破以往單一、被動的學(xué)習(xí)方式。
《圓柱的體積》教學(xué)反思4
一、我在導(dǎo)入時,突破教材,有所創(chuàng)新 圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強,不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。我認為,不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。
二、我教學(xué)新課時,實現(xiàn)人人參與,主動學(xué)習(xí)學(xué)生進行數(shù)學(xué)探究時,教師應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時,由于學(xué)校教學(xué)條件差,沒有更多的學(xué)具提供給學(xué)生,只是由教師示范演示推導(dǎo)過程:把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著教師指導(dǎo)學(xué)生悟出這個長方體的長相當(dāng)于圓柱的哪一部分的`長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。學(xué)生沒有親身參與操作,就缺乏情感空間感覺的體驗,而且這部分又是小學(xué)階段立體圖形的教學(xué)難點,學(xué)生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學(xué)生思考如何利用已知圖形體積和教學(xué)思想去解決這一問題。學(xué)生缺乏行為、認知的投入和積極的情感投入,所以,課堂效果差就可想而知了。
三、我在 練習(xí)時,形式多樣,層層遞進 ,例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,教師在設(shè)計練習(xí)時要多動腦,花心思。
《圓柱的體積》教學(xué)反思5
《圓柱的體積》不僅要讓學(xué)生掌握圓柱體積的計算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長方體正方體的體積計算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示課件:等底等高的長方體、正方體、圓柱,學(xué)生通過觀察,作出猜測:
(1)圓柱的體積等于長方體和正方體的體積。
(2)圓柱的體積也等于底面積乘高。
猜測是否準確呢?點燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用教具驗證圓柱轉(zhuǎn)化成長方體過程,并討論思考:這個圓柱體與轉(zhuǎn)化后的長方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長方體的長是圓柱的底面周長的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長的一半×底面半徑×高。我沒有否定她的回答,接著又讓學(xué)生動手實踐操作,讓學(xué)生發(fā)現(xiàn)長方體與圓柱之間的聯(lián)系,利用圓的周長和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。
在本節(jié)課的教學(xué)過程中還存在諸多的問題。
1、演示圓柱的體積的時候,因為學(xué)生手中沒有學(xué)具,教師教具的局限性,演示時后面的學(xué)生看不清楚。
2、在圓柱體經(jīng)過切割、拼接之后轉(zhuǎn)化為近似長方體的時候,應(yīng)多給后進生留有觀察、討論的時間,他們的思維反應(yīng)能力比其他學(xué)生較慢,應(yīng)給于他們一定的空間和時間,讓后進生也積極參與到課堂的學(xué)習(xí)中,使全班同學(xué)共同進步。
3、在解決實際問題的時候,不僅要注重公式的應(yīng)用,還要注意計算能力的培養(yǎng)。
《圓柱的體積》教學(xué)反思6
在教研組評課的時候,程老師說過這樣幾句話,我總結(jié)如下:
1、這節(jié)課講的是什么?
2、學(xué)習(xí)這些知識為了什么?
3、這節(jié)課講給誰?學(xué)習(xí)這些知識的學(xué)生處在什么水平?
從這幾個點反思了自己的本節(jié)課:
一、這節(jié)課講得是什么?
“是什么”的問題我的理解是理清楚本節(jié)課的教學(xué)內(nèi)容,教學(xué)目標和重難點,教師要做到心中有數(shù)。
在備課時教師首先要關(guān)注教材,尊重教材,盡自己最大的力量認識理解教材的編寫意圖,理解教材所傳遞出來的信息。同時教師在閱讀教材時要清楚教學(xué)內(nèi)容在數(shù)學(xué)知識體系中的作用,對前面學(xué)習(xí)內(nèi)容的延續(xù),對后面學(xué)習(xí)內(nèi)容有什么作用。
前面已經(jīng)學(xué)習(xí)了“長方體、正方體”立體圖形體積的計算,圓柱體積的學(xué)習(xí)是學(xué)生已有知識的延續(xù),同時為后面圓錐體積的學(xué)習(xí)做好了鋪墊和準備。在整個立體圖形的學(xué)習(xí)中起著承前啟后的作用。
本節(jié)課重點是讓學(xué)生理解并掌握圓柱體積公式,并能夠熟練應(yīng)用計算,難點是讓學(xué)生經(jīng)歷圓柱體積公式的推導(dǎo)過程。
二、將這節(jié)課是為了什么?
數(shù)學(xué)來源于生活,有應(yīng)用于生活,生活中處處有數(shù)學(xué),學(xué)習(xí)數(shù)學(xué)知識的目的就是為了應(yīng)用。那么本節(jié)課所學(xué)的知識就是為了計算一些圓柱體積的大小,這是這節(jié)課的目的所在。
三、這節(jié)課講給誰?學(xué)生的水平。
這一點就是提醒我們在備課時,充分的備學(xué)生,在充分理解教材的基礎(chǔ)上。再重新放空自己,把自己擺在學(xué)生的位置,重新學(xué)習(xí)這部分知識。以學(xué)生的姿態(tài)來備課,讀懂學(xué)生是上好課的有力保證。
“圓柱體積公式的推導(dǎo)”是在學(xué)生學(xué)習(xí)了圓柱的特征、表面積計算以及“長方體的體積”“正方體體積”等相關(guān)立體圖形的基礎(chǔ)上教學(xué)的,學(xué)生擁有繼續(xù)學(xué)習(xí)的舊知識和經(jīng)驗,即:
1知識鋪墊:學(xué)生知道“體積”的含義及計算體積的方法;
2經(jīng)驗鋪墊:在研究圓的面積時,采用“割補轉(zhuǎn)化”的方法,滲透了一種探究學(xué)習(xí)的思想方法;
四、反思本課的落實情況
導(dǎo)入部分,先復(fù)習(xí)了“圓柱”的特征,然后通過解讀課題,復(fù)習(xí)了“體積”的概念,自然的引出“我們學(xué)習(xí)過哪些圖形的體積公式”復(fù)習(xí)了長方體正方體的體積如何計算,并重點分析了立體圖形的統(tǒng)一公式,說明二者的體積與“底面積”和“高”相關(guān)。從而創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生運用已有的生活經(jīng)驗和舊知,制造認知沖突,形成了“任務(wù)驅(qū)動”的探索氛圍。
探究部分,為學(xué)生提供了觀察思考及交流討論的平臺,由于教具的限制,沒有讓學(xué)生充分的進行動手操作。這比較遺憾。通過多媒體演示讓學(xué)生在觀察中逐步經(jīng)歷計算公式的推導(dǎo)結(jié)果,并發(fā)展學(xué)生的空間觀念。
練習(xí)環(huán)節(jié)安排注重練習(xí)生活實際,讓學(xué)生應(yīng)用自己推導(dǎo)出的計算公式解決引入環(huán)節(jié)中的兩個問題,第一個問題數(shù)據(jù)提供,直接利用公式進行計算,同時在鞏固兩個計算。之后再讓學(xué)生解決老師手中的圓柱體積,這時需要讓學(xué)生測量相關(guān)數(shù)據(jù)。讓學(xué)生認識數(shù)學(xué)的價值,切實體驗到數(shù)學(xué)其實就在我們身邊。并且學(xué)生在解決問題的同時推導(dǎo)出了已知半徑和直徑計算圓柱體積的公式。
本節(jié)課最大的不足就是:學(xué)生在練習(xí)中教師關(guān)注度不夠全面。
《圓柱的體積》教學(xué)反思7
這節(jié)課我采用新課程的教學(xué)理念,合理安排教學(xué)環(huán)節(jié),激發(fā)學(xué)生的思維,組織學(xué)生參與操作,通過觀察、交流,感悟知識間的聯(lián)系,從而獲取新知。我深知教學(xué)無止境,沒有最好只有更好,我要從成功中找不足。
首先,復(fù)習(xí)內(nèi)容簡單明了,以舊引新。復(fù)習(xí)的知識點是對舊知的回顧,要求學(xué)生寫出長方體和正方體的體積計算公式,在對預(yù)習(xí)作業(yè)交流時我發(fā)現(xiàn)學(xué)生能比較順利和準確的回答,這為新課的教學(xué)活動不僅起了良好的開端,更重要的是為學(xué)生在課堂上再進一步地、更深入地探索新知削弱了阻力,減輕了負擔(dān)。
其次,引導(dǎo)學(xué)生大膽交流猜想和探索驗證。我利用課件把等底等高的長方體、正方體和圓柱體圖形和問題呈現(xiàn)出來,讓學(xué)生觀察圖形思考問題并組織討論。在對如何驗證讓學(xué)生作為重點交流。意圖是先讓學(xué)生明確兩點。第一點圓可以轉(zhuǎn)化成長方形,圓柱可以轉(zhuǎn)化長方體;第二點把圓柱的底面經(jīng)過圓心16等份,切開后可以拼成一個近似的長方體。由于學(xué)生課前做了充分的預(yù)習(xí)和課堂開始階段預(yù)習(xí)作業(yè)的交流,學(xué)生對如何驗證的思維已經(jīng)初步形成。讓學(xué)生再次交流和匯報,我發(fā)現(xiàn)學(xué)生都了解和掌握。此時我指名學(xué)生到講臺前利用教具說出操作方法,并進行操作,讓全班同學(xué)觀察操作過程。通過學(xué)生的操作、觀察,學(xué)生得到體驗和感悟,發(fā)現(xiàn)圓柱可以轉(zhuǎn)化成一個近似的長方體。
再次,課件展示、構(gòu)建新知。讓學(xué)生觀看課件:是把圓柱的底面平均分成32份切開后拼成的長方體。我抓住時機問學(xué)生:如果把圓柱的底面平均分的份數(shù)越多,切開后拼成的物體的形狀就有什么變化?學(xué)生明確回答拼成的物體越來越接近長方體。接著我把圓柱體和轉(zhuǎn)化后的長方體圖象同時顯示出來,要求學(xué)生說出長方體的底面積和高與圓柱的底面積和高有什么關(guān)系,學(xué)生能清楚地表達出來。推導(dǎo)圓柱的體積計算公式的過程分為猜想、操作、發(fā)現(xiàn)、結(jié)論四個階段,學(xué)生經(jīng)歷這些教學(xué)活動,體驗和感悟了轉(zhuǎn)化的作用和價值,弄懂得了圓柱的體積計算公式的來龍去脈。
最后,分層練習(xí),發(fā)散思維。在獲得圓柱的體積計算公式的成果之后,為了培養(yǎng)學(xué)生解題的靈活性,拓展知識,培養(yǎng)學(xué)生發(fā)散思維的能力,注意分層練習(xí),我安排了練習(xí)題是有層次和梯度的。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積。解決生活中的問題中,我設(shè)計的習(xí)題激發(fā)學(xué)生思考的欲望,壓路機、鉛筆、柱子這些圓柱體,需要實際測量什么,才能進一步求得圓柱的體積,孩子們大膽思考,結(jié)合生活實際找到了答案,體會到“生活中的數(shù)學(xué)”。在練習(xí)時我不斷巡視關(guān)注學(xué)生練習(xí)情況,鼓勵學(xué)生大膽展示,交流各自的想法和做法。對出現(xiàn)的錯誤作為教師指導(dǎo)的課程資源,強化孩子對圓柱體積知識點的深化和理解。
《圓柱的體積》教學(xué)反思8
今天第一節(jié)課荊校長和建英聽了我講的《圓柱的體積》,提出了幾點我應(yīng)該注意和改進的地方。
一是,要注重課前的預(yù)習(xí),圓柱的體積一課復(fù)習(xí)舊知環(huán)節(jié),需要學(xué)生回顧什么是體積,長方體正方體體積公式,回顧轉(zhuǎn)化的方法推導(dǎo)圓面積計算公式,需要回顧的舊知較多,所以可以課前設(shè)計成幾個問題讓學(xué)生預(yù)習(xí),就可以避免課上學(xué)生由于對知識的遺忘,而浪費時間,影響課堂的高效。
二是,猜想圓柱的體積可能與什么有關(guān)這個環(huán)節(jié),由于注重讓學(xué)生猜想,感受,體驗,并通過媒體演示驗證猜想的正確性,有些浪費時間。
三是,推導(dǎo)體積公式環(huán)節(jié),我讓學(xué)生利用拆好的圓柱學(xué)具,兩人合作,圍繞三個問題進行探究“圓柱可以轉(zhuǎn)化為我們學(xué)過的哪個立體圖形,轉(zhuǎn)化后的圖形與圓柱之間有怎樣的關(guān)系,利用這樣的關(guān)系可以推導(dǎo)出怎樣的公式”,學(xué)生合作的成果需要通過語言表達出來,所以之后的展示匯報環(huán)節(jié),我叫了三個學(xué)生上臺按照提示的三個問題完整的表述,最后有全體齊說,沒有讓學(xué)生再互相說一說,在說中再去感受推導(dǎo)的過程,我覺得這也是我欠缺的地方。
四是,練習(xí)反饋環(huán)節(jié),我依據(jù)學(xué)生推導(dǎo)出的四個公式,先讓學(xué)生看著這些公式說一說,求圓柱的體積需要知道什么條件,學(xué)生說出了四種情況:知道了半徑和高求體積;知道了周長和高求體積;知道了底面積和高求體積;知道了直徑和高求體積。我順勢出了四道這樣的練習(xí)題讓學(xué)生在本上完成并集體訂正,感覺練習(xí)的量不夠。
通過這節(jié)課,從荊校長和建英的評課中,我體會到要想提高課堂效率,首先,抓好課前預(yù)習(xí),其次,注重用多種方式讓學(xué)生多說而且要說透,最后,注意各環(huán)節(jié)時間分配要合理,做到心中有數(shù)。還有就是要加大練習(xí)量,關(guān)注到每一個學(xué)生,對學(xué)生學(xué)習(xí)效果掌握程度做到了如指掌。
《圓柱的體積》教學(xué)反思9
《圓柱的體積》一課是在學(xué)生已經(jīng)學(xué)習(xí)了“圓的面積計算”和“長方體、正方體的體積”及圓柱的相關(guān)知識的基礎(chǔ)上教學(xué)的。
教學(xué)時我注重引導(dǎo)學(xué)生經(jīng)歷“類比猜想 驗證說明”的探索過程。由于圓柱和長方體都是直柱體,長方體的體積是底面積×高,因而我引導(dǎo)學(xué)生猜想圓柱的體積是否也可以用底面積×高來計算。接著引導(dǎo)學(xué)生想辦法證明自己的猜想,也就是驗證說明。重視學(xué)生已有的經(jīng)驗,是新課改教學(xué)的重要理念,因而我引導(dǎo)學(xué)生回憶以前學(xué)習(xí)的“把未知的問題轉(zhuǎn)化為已知的問題”的方法,即“怎樣把圓柱轉(zhuǎn)化成已知的形體”的問題。大部分學(xué)生都能想到把“圓柱轉(zhuǎn)化成長方體”,接著就“怎樣將圓柱轉(zhuǎn)化成長方體”這個問題,讓他們觀察、研究、討論。學(xué)生受到以前“圓的面積”推導(dǎo)過程的啟發(fā),都知道應(yīng)把圓柱平均分成若干份切開,拼成近似的長方體。由于學(xué)生沒有學(xué)具,因此我用教具演示整個過程,然后引導(dǎo)學(xué)生思考:長方體底面的長相當(dāng)于圓柱底面的什么?(周長的一半即π r)長方體底面的寬相當(dāng)于圓柱底面的什么?(圓的半徑r)再根據(jù)長方體的面積公式推導(dǎo)出圓柱體積公式V=π r2 × h或V=S×h。這樣讓學(xué)生親身經(jīng)歷知識的形成過程,為學(xué)生的主動探索與發(fā)現(xiàn)提供了空間。
我覺得本課比較成功的一點是學(xué)生除了掌握本課的知識點外,還懂得了“類比猜想 驗證說明”的數(shù)學(xué)思想方法,可以說是既授之于“魚”,又授之于“漁”。
《圓柱的體積》教學(xué)反思10
本課主要內(nèi)容是圓柱的體積公式的推導(dǎo)及其應(yīng)用。因為公式的推導(dǎo)過程是個難點,因此在教學(xué)設(shè)計時,我采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,幫助學(xué)生理解公式的來源,從而獲得知識。下面我從教學(xué)過程、教學(xué)策略、教學(xué)技能等方面談?wù)勛约旱囊恍┓此肌?/p>
一、在教學(xué)過程的設(shè)計方面
1、導(dǎo)入時,力求突破教材,有所創(chuàng)新
圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強,不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設(shè)計時不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、
流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。不過應(yīng)該注意時間的控制,不能花費太多的時間。
2、新課時,要實現(xiàn)人人參與,主動學(xué)習(xí)
學(xué)生進行數(shù)學(xué)探究時,應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時,我讓學(xué)生經(jīng)歷先想—觀察—動手操作的過程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著讓學(xué)生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。這樣學(xué)生親身參與操作,有了空間感覺的體驗,,也有了充分的思考空間。這樣設(shè)計我覺得能突破難點,課堂效果很好。
3、練習(xí)時,形式多樣,層層遞進
例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,我在設(shè)計練習(xí)時動了一番腦,花心思去考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。通過反思,我概括出五種類型。
a.已知圓柱底面積(s)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=sh。
b.已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=πr2h。
c.已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(d/2)2h。
d.已知圓柱底面周長(c)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)2h。
e.已知圓柱側(cè)面積(s側(cè))和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(s側(cè)÷h÷π÷2)2h。
因為是第一課時所以在鞏固練習(xí)中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學(xué)生真正掌握好計算圓柱體積的方法另外,還設(shè)計了解決生活中的問題,讓學(xué)生能學(xué)以致用解決生活中的問題。
二、在教學(xué)策略方面
我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。而在鞏固練習(xí)這一環(huán)節(jié),我用多媒體發(fā)揮它大容量、節(jié)省時間的優(yōu)點。
三、在教學(xué)技能方面
學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是學(xué)生在自己艱苦的學(xué)習(xí)過程中發(fā)現(xiàn)并從學(xué)生的口里說出來的,這樣的知識具有個人意義,理解更深刻。但是我覺得這個引導(dǎo)的過程需要教師有認真準備,隨時能解決課堂上可能出現(xiàn)的一些問題。傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設(shè)了豐富的教學(xué)情景。
四、存在的問題
不足之處是:由于這節(jié)課的設(shè)計是以學(xué)生為主、發(fā)揮學(xué)生的主體作用,要充分展示學(xué)生的思維過程,所以在學(xué)生動手實踐、交流討論和思考的時間上教師應(yīng)合理把握,不能時間較多,否則會導(dǎo)致練習(xí)的時間較少。
另外,在練習(xí)設(shè)計上,題形雖然全,但覺得題量偏多,因為這部分練習(xí)涉及的計算多、難,這樣練習(xí)題還需精心設(shè)計。
《圓柱的體積》教學(xué)反思11
本節(jié)課主要是引導(dǎo)學(xué)生探索并掌握圓柱的體積公式,主要重視了以下幾方面:
1、重視先猜想、再驗證的思路來引入教學(xué)。
新課伊始,課件出示三個幾何體的底面和高,引導(dǎo)學(xué)生來觀察這三個幾何體,發(fā)現(xiàn)它們的底面積都相等,高也都相等。進一步引導(dǎo)思考:想一想,長方體和正方體的體積相等嗎?為什么?猜一猜,圓柱的體積與長方體和正方體的體積相等嗎?學(xué)生認同,并提出等于底面積乘高。教師再次拋出問題:這僅僅是猜想,那用什么辦法驗證呢?今天這節(jié)課就來研究這個問題。
2、重視利用知識、方法的遷移來展開教學(xué)。
本課的例題探索,有一個目標就是使學(xué)生在活動中進一步體會“轉(zhuǎn)化”方法的價值,培養(yǎng)應(yīng)用已有知識解決新問題的能力,發(fā)展空間觀念和初步的推理能力。因此,筆者在執(zhí)教時,根據(jù)陳星月的回答順勢復(fù)習(xí)了圓面積的推導(dǎo):把一個圓平均分成16份、32份、64份或更多,剪開后可以拼成近似的長方形,圓的面積就可以轉(zhuǎn)化成長方形的面積進行計算。接著提問:那么,受這個啟發(fā),那我們能不能將圓柱轉(zhuǎn)化成長方體來計算體積呢?首先實物演示圓柱切拼的過程。把圓柱的底面平均分成16份,切開后可以拼成一個近似的長方體。然后進行課件演示,發(fā)現(xiàn):把圓柱的底面平均分的份數(shù)越多,拼成的幾何體會越來越接近長方體。這樣有利于激活學(xué)生已有的知識和經(jīng)驗,使學(xué)生充分體會圓柱體積公式推導(dǎo)過程的合理性,并不斷豐富對圖形轉(zhuǎn)化方法的感受。
3、重視通過核心問題的討論和板書的精當(dāng)設(shè)計來突出重點、突破難點。
核心問題即指中心問題,是諸多問題中相對最具思維價值、最利于學(xué)生思考及最能揭示事物本質(zhì)的問題。它是在教學(xué)過程中,為學(xué)生更好地理解和掌握新知、更好地積累學(xué)習(xí)經(jīng)驗和方法,針對具體教學(xué)內(nèi)容,提煉而成的教學(xué)中心問題。就如圓柱體積的計算而言,在這節(jié)課的教學(xué)過程中,教師抓住“圓柱的體積可能跟圓柱的哪些條件有關(guān)呢?”“拼成的長方體與原來的圓柱有什么關(guān)系?”“要計算圓柱的體積一般要知道哪些條件?”這三個問題,使學(xué)生在獲取圓柱體積公式的同時又了解了體積公式的由來,并及時總結(jié)了思考問題的方法。核心問題也可以指為了探究知識的來龍去脈而在關(guān)鍵環(huán)節(jié)提出的指向性問題。
當(dāng)然,需要注意和改進的地方是:書寫格式的規(guī)范。
《圓柱的體積》教學(xué)反思12
對《圓柱的體積》一節(jié),備課階段,我跟馮老師討論過,3.19下午,又全程聆聽了三位教師的同課異構(gòu),領(lǐng)略了他們不同個性的教學(xué)風(fēng)格。在我看來,盡管是同課異構(gòu),盡管是個性課堂,一些基本的原則還是要遵守的。例如,深入地理解教材,例如,盡可能地保持數(shù)學(xué)的邏輯嚴密性,等等。
對于這節(jié)教材的理解,最嚴重的分歧可能來自圓柱的體積公式。教材為什么給出的是“V=Sh”而不是“V=πrh”。我想,這里的原因大概有兩個:一是要統(tǒng)一(柱體的)體積公式,減輕學(xué)生的記憶負擔(dān)。事實上,V=Sh也確實更能體現(xiàn)柱體體積的本質(zhì),不同柱體體積的不同公式,只是進一步描述了它們的不同的S罷了。另一個原因,是為方便學(xué)生對公式推導(dǎo)過程的理解。當(dāng)圓柱被分割為有限個曲面三棱柱并拼為準長方體時,半徑r只是接近而并沒有等于長方體的寬,只有這個分割被無限化(取極限)時,圓柱的半徑才能與長方體的寬相等。因此,與其讓學(xué)生去費解地或不求甚解地觀察“長方體的寬與圓柱的半徑的關(guān)系”,還不如只觀察兩者的底面積S。在我看來,這樣地處理,是新教材較舊教材高明之處,而有的教師之所以走回老路,恐怕是對新教材理解不到位的緣故。
對于這節(jié)課的異構(gòu),分歧最大的地方可能是對探索或計算的側(cè)重,以及是否需要、是否可以有多種探索方法。從教材的表述看,這節(jié)課的新授完全圍繞著公式的提出(猜想)、推導(dǎo)(驗證)展開,其第一課時的教學(xué)重點無疑應(yīng)當(dāng)放在公式的探索上。至于探索的途徑或方法,我認為,主要有兩個:一是轉(zhuǎn)化,把圓柱體轉(zhuǎn)化為長方體,二是驗算,假設(shè)猜想的公式是正確的,利用它算出結(jié)果并設(shè)法檢驗。例如,可以將圓柱形固體放到較大的液體量具中,通過比較圓柱體積的猜想值與液體體積的增長量,證明體積計算的正確性。也可以將圓柱體形狀的橡皮泥捏成長方體形狀,如果能夠在變形的過程中保持高的不變,則可以直接證明所猜想公式的正確性,否則,就要通過計算來作出間接的證明。如何理解教材中“堆硬幣”的意圖?我以為,這段教材的用意在于“提出猜想”而非驗證猜想。之所以這樣認為,原因有二,一是教材的表述,它說的是:“從‘堆硬幣’來看,用‘底面積乘高’可以計算出圓柱的體積。”而不是說圓柱的體積就是底面積乘高’。二是如果作為驗證方法,在邏輯上就犯了循環(huán)論證的錯誤,因為硬幣本身實際上也是圓柱,它的體積是否等于底面積乘高,本身就是要待驗證的。馮老師在教學(xué)中將其處理為“無數(shù)個圓疊加成為圓柱”,則使得它在邏輯上不再循環(huán)(雖然,這里的“積分過程”包含的極限思想要比“化圓為方”更難為小學(xué)生所理解。)。我認為,由于“堆硬幣”的目的在于換一個角度提出猜想,教學(xué)中當(dāng)學(xué)生能夠提出猜想時,“疊圓成柱”的過程就顯得不那么非要不可了。而通過多媒體課件演示圓柱的“化圓為方”的過程卻是完全必要的。教師與學(xué)生一道經(jīng)歷了把十六等分的曲面三棱柱拼成“準長方體”之后,可以引導(dǎo)學(xué)生觀察這個長方體的“近似性”,并啟發(fā)他們想象當(dāng)?shù)确值臄?shù)量增大到三十二、六十四、----的情況,在其想象之后,再用課件演示極限化的過程,大多數(shù)學(xué)生應(yīng)當(dāng)是可以真正理解的。
《圓柱的體積》教學(xué)反思13
一、導(dǎo)入時,要突破教材,有所創(chuàng)新圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強,不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。我認為,不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。
二、新課時,要實現(xiàn)人人參與,主動學(xué)習(xí)學(xué)生進行數(shù)學(xué)探究時,教師應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時,由于學(xué)校教學(xué)條件差,沒有更多的學(xué)具提供給學(xué)生,只是由教師示范演示推導(dǎo)過程:把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著教師指導(dǎo)學(xué)生悟出這個長方體的長相當(dāng)于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。學(xué)生沒有親身參與操作,就缺乏情感空間感覺的體驗,而且這部分又是小學(xué)階段立體圖形的教學(xué)難點,學(xué)生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學(xué)生思考如何利用已知圖形體積和教學(xué)思想去解決這一問題。學(xué)生缺乏行為、認知的投入和積極的情感投入,所以,課堂效果差就可想而知了。
三、練習(xí)時,要形式多樣,層層遞進
例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,教師在設(shè)計練習(xí)時要多動腦,花心思去考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。
《圓柱的體積》教學(xué)反思14
圓柱的體積計算方法的推導(dǎo)。教學(xué)前我就思考,不僅要讓學(xué)生掌握圓柱體積的計算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長方體正方體的體積計算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示掛圖:等底等高的長方體、正方體、圓柱,學(xué)生通過觀察,作出猜測:
(1)圓柱的體積等于長方體和正方體的體積。
(2)圓柱的體積也等于底面積乘高。猜測是否準確呢?
點燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用學(xué)具驗證圓柱轉(zhuǎn)化成長方體過程,并討論思考:這個圓柱體與轉(zhuǎn)化后的長方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。還有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長方體的長是圓柱的底面周長的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長的一半×底面半徑×高。首先我對這種方法加以肯定,然后利用圓的周長和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。
《圓柱的體積》教學(xué)反思15
《圓柱的體積》以前教學(xué)此內(nèi)容時,由于沒有相應(yīng)的教具,往往直接告訴學(xué)生:圓柱的體積=底面積×高,用字母表示公式:V=SH,讓學(xué)生套公式練習(xí);這學(xué)期我教本節(jié)課內(nèi)容時,課前作了充分準備了教具,再加之網(wǎng)上收集整理出來相應(yīng)的教學(xué)課件,課堂教學(xué)我讓學(xué)生自己動手實踐、自主探索與合作交流,讓學(xué)生實踐中體驗,從而獲得知識。總之讓學(xué)生的手、腦、嘴、眼各種器官充分利用起來,讓學(xué)生不僅學(xué)到知識,而且讓學(xué)生體驗學(xué)習(xí)的過程,真正理解圓柱體積的推導(dǎo)過程,讓學(xué)生真正成為學(xué)習(xí)的主人。對此,我有以下的感想
一、學(xué)生學(xué)到了有價值的知識。
學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是我告訴的,而是學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的,這樣的知識具有個人意義,理解更深刻。這樣學(xué)生不但嘗到了知識,更重要的是他們掌握了學(xué)習(xí)數(shù)學(xué)的方法,這樣有利于孩子將來的發(fā)展。
二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。
新課程改革明確提出要“強調(diào)讓學(xué)生通過實踐增強探究和創(chuàng)新意識,學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。本節(jié)課我讓學(xué)生聯(lián)系圓的面積推導(dǎo)的基礎(chǔ)上,讓學(xué)生自主探究圓柱的體積的推導(dǎo)過程。充分體現(xiàn)了這一理念。
三、促進了學(xué)生的思維發(fā)展。
傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。
讓課堂留下學(xué)生的痕跡
——《圓柱的體積》教學(xué)反思
“圓柱的體積”這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了“圓的面積計算”、“長方體的體積”、“正方體的體積”、“圓柱的認識”等相關(guān)的形體知識的基礎(chǔ)上教學(xué)的。本節(jié)課主要內(nèi)容是圓柱的體積公式的推導(dǎo)及其應(yīng)用。因為公式的推導(dǎo)過程是個難點,因此在教學(xué)設(shè)計時,我采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,幫助學(xué)生理解公式的來源,從而獲得知識。結(jié)合本節(jié)課的教學(xué)實際,反思如下:
一、讓學(xué)生在主動參與中學(xué)習(xí)新的知識。動手實踐、自主探究、合作交流是《新課程標準》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在探究圓柱體積的過程中,我從本班學(xué)情出發(fā),大膽放手讓學(xué)生猜想“圓柱體積大小可能與什么有關(guān),可能怎樣計算,為什么?”,然后再結(jié)合以往學(xué)習(xí)幾何圖形的經(jīng)驗,回顧圓的面積推導(dǎo)過程,實現(xiàn)知識遷移,明確“轉(zhuǎn)化”思想在數(shù)學(xué)研究中的重要意義。為了讓學(xué)生直觀感受到圓柱體轉(zhuǎn)化為長方體的過程,我較好地借助實物模型和多媒體課件演示,把二者有機結(jié)合,先讓小組四個學(xué)生上臺操作演示,然后再課件動態(tài)模擬,在學(xué)生充分觀察的基礎(chǔ)上,小組討論交流:當(dāng)圓柱體轉(zhuǎn)化成近似的長方體后什么變了,什么沒變?長方體的底面積與圓柱的底面積有什么關(guān)系?長方體的高與圓柱的高有什么關(guān)系?從而得出結(jié)論:圓柱。