久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

機(jī)械專業(yè)論文謝詞

時(shí)間:2019-05-15 09:10:32下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《機(jī)械專業(yè)論文謝詞》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《機(jī)械專業(yè)論文謝詞》。

第一篇:機(jī)械專業(yè)論文謝詞

經(jīng)過幾個(gè)月的查詢資料、整理材料、寫作論文,今天終于順利的完成設(shè)計(jì)的最后的辭謝了,想了很久,要寫下這一段謝詞,表示可以進(jìn)行畢業(yè)答辯了,自己想想求學(xué)期間的點(diǎn)點(diǎn)滴滴,歷歷在目,時(shí)光匆匆飛逝,在亳州職業(yè)技術(shù)學(xué)院學(xué)習(xí)期間,努力與付出,隨著論文的完成,終于讓我的大學(xué)生活,有了一個(gè)完美的句號。

論文得以完成,首先要感謝馬兵老師,因?yàn)楫厴I(yè)設(shè)計(jì)在你們的悉心教導(dǎo)下才能順利完成,老師淵博的專業(yè)知識,嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度,精益求精的工作作風(fēng),晦人不倦的高尚師德,嚴(yán)以律己、寬以待人的高尚風(fēng)范、樸實(shí)無華、平易近人的人格魅力對我的影響非常深遠(yuǎn)。

另外,要感謝在大學(xué)期間所有傳授我知識的老師,是你們的諄諄教導(dǎo)才是我有了良好的專業(yè)課知識,這也是我的論文完成的基礎(chǔ)。

通過此次的論文,我學(xué)到了很多的知識,跨越了傳統(tǒng)方式下的教與學(xué)的體制束縛,在論文的寫作過程中,通過查資料和搜索有關(guān)的文獻(xiàn),培養(yǎng)了自學(xué)能力和動(dòng)手能力,并且由原來的被動(dòng)接收知識轉(zhuǎn)換為主動(dòng)的尋找知識,這可以說是學(xué)習(xí)上的偉大突破,在以往的傳統(tǒng)學(xué)習(xí)模式下,我們學(xué)會了如何將學(xué)來的知識轉(zhuǎn)化為自己的東西,學(xué)會了怎么更好地處理知識和實(shí)踐相結(jié)合的問題。

在論文的寫作過程中也學(xué)到了多任何事情所要有的態(tài)度和心態(tài),首先做論文要一絲不茍,對于發(fā)展過程中出現(xiàn)的任何問題和偏差都不要輕視,要通過正確的途徑去解決,在做事情的過程中要有耐心和毅力,不要一遇到困難就打退堂鼓,只要堅(jiān)持下去就可以找到思路去解決問題。

總之,此次論文的寫作過程,我收獲了很多,即為大學(xué)學(xué)習(xí)畫上了一個(gè)完美的句號,也為人生之路做好了一個(gè)很好的鋪墊。

再次感謝亳州職業(yè)技術(shù)學(xué)院的所有幫助過我,給我鼓勵(lì)的老師、同學(xué)和朋友,謝謝你們。

第二篇:機(jī)械專業(yè)論文中英文對照

Gearbox Noise?Correlation with Transmission Error and Influence of Bearing Preload

ABSTRACT The five appended papers all deal with gearbox noise and vibration.The first paper presents a review of previously published literature on gearbox noise and vibration.The second paper describes a test rig that was specially designed and built for noise testing of gears.Finite element analysis was used to predict the dynamic properties of the test rig, and experimental modal analysis of the gearbox housing was used to verify the theoretical predictions of natural frequencies.In the third paper, the influence of gear finishing method and gear deviations on gearbox noise is investigated in what is primarily an experimental study.Eleven test gear pairs were manufactured using three different finishing methods.Transmission error, which is considered to be an important excitation mechanism for gear noise, was measured as well as predicted.The test rig was used to measure gearbox noise and vibration for the different test gear pairs.The measured noise and vibration levels were compared with the predicted and measured transmission error.Most of the experimental results can be interpreted in terms of measured and predicted transmission error.However, it does not seem possible to identify one single parameter,such as measured peak-to-peak transmission error, that can be directly related to measured noise and vibration.The measurements also show that disassembly and reassembly of the gearbox with the same gear pair can change the levels of measured noise and vibration considerably.This finding indicates that other factors besides the gears affect gear noise.In the fourth paper, the influence of bearing endplay or preload on gearbox noise and vibration is investigated.Vibration measurements were carried out at torque levels of 140 Nm and 400Nm, with 0.15 mm and 0 mm bearing endplay, and with 0.15 mm bearing preload.The results show that the bearing endplay and preload

influence the gearbox vibrations.With preloaded bearings, the vibrations increase at speeds over 2000 rpm and decrease at speeds below 2000 rpm, compared with bearings with endplay.Finite element simulations show the same tendencies as the measurements.The fifth paper describes how gearbox noise is reduced by optimizing the gear geometry for decreased transmission error.Robustness with respect to gear deviations and varying torque is considered in order to find a gear geometry giving low noise in an appropriate torque range despite deviations from the nominal geometry due to manufacturing tolerances.Static and dynamic transmission error, noise, and housing vibrations were measured.The correlation between dynamic transmission error, housing vibrations and noise was investigated in speed sweeps from 500 to 2500 rpm at constant torque.No correlation was found between dynamic transmission error and noise.Static loaded transmission error seems to be correlated with the ability of the gear pair to excite vibration in the gearbox dynamic system.Keywords: gear, gearbox, noise, vibration, transmission error, bearing preload.ACKNOWLEDGEMENTS This work was carried out at Volvo Construction Equipment in Eskilstuna and at the Department of Machine Design at the Royal Institute of Technology(KTH)in Stockholm.The work was initiated by Professor Jack Samuelsson(Volvo and KTH), Professor S?ren Andersson(KTH), and Dr.Lars Br?the(Volvo).The financial support of the Swedish Foundation for Strategic Research and the Swedish Agency for Innovation Systems – VINNOVA – is gratefully acknowledged.Volvo Construction Equipment is acknowledged for giving me the opportunity to devote time to this work.Professor S?ren Andersson is gratefully acknowledged for excellent guidance and encouragement.I also wish to express my appreciation to my colleagues at the Department of Machine Design, and especially to Dr.Ulf Sellgren for performing simulations and contributing to the writing of Paper D, and Dr.Stefan Bj?rklund for performing surface finish measurements.The contributions to Paper C by Dr.Mikael

P?rssinen are highly appreciated.All contributionsto this work by colleagues at Volvo are gratefully appreciated.1 INTRODUCTION 1.1 Background Noise is increasingly considered an environmental issue.This belief is reflected in demands for lower noise levels in many areas of society, including the working environment.Employees spend a lot of time in this environment and noise can lead not only to hearing impairment but also to decreased ability to concentrate, resulting in decreased productivity and an increased risk of accidents.Quality, too, has become increasingly important.The quality of a product can be defined as its ability to fulfill customers’ demands.These demands often change over time, and the best competitors in the market will set the standard.Noise concerns are also expressed in relation to construction machinery such as wheel loaders and articulated haulers.The gearbox is sometimes the dominant source of noise in these machines.Even if the gear noise is not the loudest source, its pure high frequency tone is easily distinguished from other noise sources and is often perceived as unpleasant.The noise creates an impression of poor quality.In order not to be heard, gear noise must be at least 15 dB lower than other noise sources, such as engine noise.1.2 Gear noise This dissertation deals with the kind of gearbox noise that is generated by gears under load.This noise is often referred to as “gear whine” and consists mainly of pure tones at high frequencies corresponding to the gear mesh frequency and multiples thereof, which are known as harmonics.A tone with the same frequency as the gear mesh frequency is designated the gear mesh harmonic, a tone with a frequency twice the gear mesh frequency is designated the second harmonic, and so on.The term “gear mesh harmonics” refers to all multiples of the gear mesh frequency.Transmission error(TE)is considered an important excitation mechanism for gear whine.Welbourn [1] defines transmission error as “the difference between

the actual position of the output gear and the position it would occupy if the gear drive were perfectly conjugate.” Transmission error may be expressed as angular displacement or as linear displacement at the pitch point.Transmission error is caused by deflections, geometric errors, and geometric modifications.In addition to gear whine, other possible noise-generating mechanisms in gearboxes include gear rattle from gears running against each other without load, and noise generated by bearings.In the case of automatic gearboxes, noise can also be generated by internal oil pumps and by clutches.None of these mechanisms are dealt with in this work, and from now on “gear noise” or “gearbox noise” refers to “gear whine”.MackAldener [2] describes the noise generation process from a gearbox as consisting of three parts: excitation, transmission, and radiation.The origin of the noise is the gear mesh, in which vibrations are created(excitation), mainly due to transmission error.The vibrations are transmitted via the gears, shafts, and bearings to the housing(transmission).The housing vibrates, creating pressure variations in the surrounding air that are perceived as noise(radiation).Gear noise can be affected by changing any one of these three mechanisms.This dissertation deals mainly with excitation, but transmission is also discussed in the section of the literature survey concerning dynamic models, and in the modal analysis of the test gearbox in Paper B.Transmission of vibrations is also investigated in Paper D, which deals with the influence of bearing endplay or preload on gearbox noise.Differences in bearing preload influence a bearing’s dynamic properties like stiffness and damping.These properties also affect the vibration of the gearbox housing.1.3 Objective The objective of this dissertation is to contribute to knowledge about gearbox noise.The following specific areas will be the focus of this study: 1.The influence of gear finishing method and gear modifications and errors on noise and vibration from a gearbox.2.The correlation between gear deviations, predicted transmission error, measured transmission error, and gearbox noise.3.The influence of bearing preload on gearbox noise.4.Optimization of gear geometry for low transmission error, taking into consideration robustness with respect to torque and manufacturing tolerances.2 AN INDUSTRIAL APPLICATION ? TRANSMISSION NOISE REDUCTION 2.1 Introduction This section briefly describes the activities involved in reducing gear noise from a wheel loader transmission.The aim is to show how the optimization of the gear geometry described in Paper E is used in an industrial application.The author was project manager for the “noise work team” and performed the gear optimization.One of the requirements when developing a new automatic power transmission for a wheel loader was improving the transmission gear noise.The existing power transmission was known to be noisy.When driving at high speed in fourth gear, a high frequency gear-whine could be heard.Thus there were now demands for improved sound quality.The transmission is a typical wheel loader power transmission, consisting of a torque converter, a gearbox with four forward speeds and four reverse speeds, and a dropbox partly integrated with the gearbox.The dropbox is a chain of four gears transferring the powerto the output shaft.The gears are engaged by wet multi-disc clutches actuated by the transmission hydraulic and control system.2.2 Gear noise target for the new transmission Experience has shown that the high frequency gear noise should be at least 15 dB below other noise sources such as the engine in order not to be perceived as disturbing or unpleasant.Measurements showed that if the gear noise could be decreased by 10 dB, this criterion should be satisfied with some margin.Frequency analysis of the noise measured in the driver's cab showed that the dominant noise from the transmission originated from the dropbox gears.The goal for transmission noise was thus formulated as follows: “The gear noise(sound pressure level)from the dropbox

gears in the transmission should be decreased by 10 dB compared to the existing transmission in order not to be perceived as unpleasant.It was assumed that it would be necessary to make changes to both the gears and the transmission housing in order to decrease the gear noise sound pressure level by 10 dB.2.3 Noise and vibration measurements In order to establish a reference for the new transmission, noise and vibration were measured for the existing transmission.The transmission is driven by the same type of diesel engine used in a wheel loader.The engine and transmission are attached to the stand using the same rubber mounts that are used in a wheel loader in order to make the installation as similar as possible to the installation in a wheel loader.The output shaft is braked using an electrical brake.2.4 Optimization of gears Noise-optimized dropbox gears were designed by choosing macro-and microgeometries giving lower transmission error than the original(reference)gears.The gear geometry was chosen to yield a low transmission error for the relevant torque range, while also taking into consideration variations in the microgeometry due to manufacturing tolerances.The optimization of one gear pair is described in more detail in Paper E.Transmission error is considered an important excitation mechanism for gear whine.Welbourn [1] defines it as “the difference between the actual position of the output gear and the position it would occupy if the gear drive were perfectly conjugate.” In this project the aim was to reduce the maximum predicted transmission error amplitude at gear mesh frequency(first harmonic of gear mesh frequency)to less than 50% of the value for the reference gear pair.The first harmonic of transmission error is the amplitude of the part of the total transmission error that varies with a frequency equal to the gear mesh frequency.A torque range of 100 to 500 Nm was chosen because this is the torque interval in which the gear pair generates noise in its design application.According to Welbourn [1], a 50% reduction in transmission error can be expected to reduce gearbox noise by 6 dB

(sound pressure level, SPL).Transmission error was calculated using the LDP software(Load Distribution Program)developed at the Gear Laboratory at Ohio State University [3].The “optimization” was not strictly mathematical.The design was optimized by calculating the transmission error for different geometries, and then choosing a geometry that seemed to be a good compromise, considering not only the transmission error, but also factors such asstrength, losses, weight, cost, axial forces on bearings, and manufacturing.When choosing microgeometric modifications and tolerances, it is important to take manufacturing options and cost into consideration.The goal was to use the same finishing method for the optimized gears as for the reference gears, namely grinding using a KAPP VAS 531 and CBN-coated grinding wheels.For a specific torque and gear macrogeometry, it is possible to define a gear microgeometry that minimizes transmission error.For example, at no load, if there are no pitch errors and no other geometrical deviations, the shape of the gear teeth should be true involute, without modifications like tip relief or involute crowning.For a specific torque, the geometry of the gear should be designed in such a way that it compensates for the differences in deflection related to stiffness variations in the gear mesh.However, even if it is possible to define the optimal gear microgeometry, it may not be possible to manufacture it, given the limitations of gear machining.Consideration must also be given to how to specify the gear geometry in drawings and how to measure the gear in an inspection machine.In many applications there is also a torque range over which the transmission error should be minimized.Given that manufacturing tolerances are inevitable, and that a demand for smaller tolerances leads to higher manufacturing costs, it is important that gears be robust.In other words, the important characteristics, in this case transmission error, must not vary much when the torque is varied or when the microgeometry of the gear teeth varies due to manufacturing tolerances.LDP [3] was used to calculate the transmission error for the reference and optimized gear pair at different torque levels.The robustness function in LDP was used to analyze the sensitivity to deviations due to manufacturing tolerances.The “min, max, level” method involves assigning three levels to each parameter.2.5 Optimization of transmission housing Finite element analysis was used to optimize the transmission housing.The optimization was not performed in a strictly mathematical way, but was done by calculating the vibration of the housing for different geometries and then choosing a geometry that seemed to be a good compromise.Vibration was not the sole consideration, also weight, cost, available space, and casting were considered.A simplified shell element model was used for the optimization to decrease computational time.This model was checked against a more detailed solid element model of the housing to ensure that the simplification had not changed the dynamic properties too much.Experimental modal analysis was also used to find the natural frequencies of the real transmission housing and to ensure that the model did not deviate too much from the real housing.Gears shafts and bearings were modeled as point masses and beams.The model was excited at the bearing positions by applying forces in the frequency range from 1000 to 3000 Hz.The force amplitude was chosen as 10% of the static load from the gears.This choice could be justified because only relative differences are of interest, not absolute values.The finite element analysis was performed by Torbj?rn Johansen at Volvo Technology.The author’s contribution was the evaluation of the results of different housing geometries.A number of measuring points were chosen in areas with high vibration velocities.At each measuring point the vibration response due to the excitation was evaluated as a power spectral density(PSD)graph.The goal of the housing redesign was to decrease the vibrations at all measuring points in the frequency range 1000 to 3000 Hz.2.6 Results of the noise measurements The noise and vibration measurements described in section 2.3 were performed after optimizing the gears and transmission housing.The total sound power level decreased by 4 dB.2.7 Discussion and conclusions It seems to be possible to decrease the gear noise from a transmission by

decreasing the static loaded transmission error and/or optimizing the housing.In the present study, it is impossible to say how much of the decrease is due to the gear optimization and how much to the housing optimization.Answering this question would have required at least one more noise measurement, but time and cost issues precluded this.It would also have been interesting to perform the noise measurements on a number of transmissions, both before and after optimizing the gears and housing, in order to determine the scatter of the noise of the transmissions.Even though the goal of decreasing the gear noise by 10 dB was not reached, the goal of reducing the gear noise in the wheel loader cab to 15 dB below the overall noise was achieved.Thus the noise optimization was successful.3 SUMMARY OF APPENDED PAPERS 3.1 Paper A: Gear Noise and Vibration – A Literature Survey This paper presents an overview of the literature on gear noise and vibration.It is divided into three sections dealing with transmission error, dynamic models, and noise and vibration measurement.Transmission error is an important excitation mechanism for gear noise and vibration.It is defined as “the difference between the actual position of the output gear and the position it would occupy if the gear drive were perfectly conjugate” [1].The literature survey revealed that while most authors agree that transmission error is an important excitation mechanism for gear noise and vibration, it is not the only one.Other possible time-varying noise excitation mechanisms include friction and bending moment.Noise produced by these mechanisms may be of the same order of magnitude as that produced by transmission error, at least in the case of gears with low transmission error [4].The second section of the paper deals with dynamic modeling of gearboxes.Dynamic models are often used to predict gear-induced vibrations and investigate the effect of changes to the gears, shafts, bearings, and housing.The literature survey revealed that dynamic models of a system consisting of gears, shafts, bearings, and gearbox casing can be useful in understanding and predicting the dynamic behavior of a gearbox.For

relatively simple gear systems, lumped parameter dynamic models with springs, masses, and viscous damping can be used.For more complex models that include such elements as the gearbox housing, finite element modeling is often used.The third section of the paper deals with noise and vibration measurement and signal analysis, which are used when experimentally investigating gear noise.The survey shows that these are useful tools in experimental investigation of gear noise because gears create noise at specific frequencies related to the number of teeth and the rotational speed of the gear.3.2 Paper B: Gear Test Rig for Noise and Vibration Testing of Cylindrical Gears Paper B describes a test rig for noise testing of gears.The rig is of the recirculating power type and consists of two identical gearboxes, connected to each other with two universal joint shafts.Torque is applied by tilting one of the gearboxes around one of its axles.This tilting is made possible by bearings between the gearbox and the supporting brackets.A hydraulic cylinder creates the tilting force.Finite element analysis was used to predict the natural frequencies and mode shapes for individual components and for the complete gearbox.Experimental modal analysis was carried out on the gearbox housing, and the results showed that the FE predictions agree with the measured frequencies(error less than 10%).The FE model of the complete gearbox was also used in a harmonic response analysis.A sinusoidal force was applied in the gear mesh and the corresponding vibration amplitude at a point on the gearbox housing was predicted.3.3 Paper C: A Study of Gear Noise and Vibration Paper C reports on an experimental investigation of the influence of gear finishing methods and gear deviations on gearbox noise and vibration.Test gears were manufactured using three different finishing methods and with different gear tooth modifications and deviations.Table3.3.1 gives an overview of the test gear pairs.The surface finishes and geometries of the gear tooth flanks were measured.Transmission error was measured using a single flank gear tester.LDP software from Ohio State University was used for transmission error computations.The test rig described in Paper B was used to measure gearbox noise and vibration for the different test gear pairs.The measurements showed that disassembly and reassembly of the gearbox with the same gear pair might change the levels of measured noise and vibration.The rebuild variation was sometimes of the same order of magnitude as the differences between different tested gear pairs, indicating that other factors besides the gears affect gear noise.In a study of the influence of gear design on noise, Oswald et al.[5] reported rebuild variations of the same order of magnitude.Different gear finishing methods produce different surface finishes and structures, as well as different geometries and deviations of the gear tooth flanks, all of which influence the transmission error and thus the noise level from a gearbox.Most of the experimental results can be explained in terms of measured and computed transmission error.The relationship between predicted peak-to-peak transmission error and measured noise at a torque level of 500 Nm is shown in Figure 3.3.1.There appears to be a strong correlation between computed transmission error and noise for all cases except gear pair K.However, this correlation breaks down in Figure 3.3.2, which shows the relationship between predicted peak to peak transmission error and measured noise at a torque level of 140 Nm.The final conclusion is that it may not be possible to identify a single parameter, such as peak-to-peak transmission error, that can be directly related to measured noise and vibration.3.4 Paper D: Gearbox Noise and Vibration ?Influence of Bearing Preload The influence of bearing endplay or preload on gearbox noise and vibrations is investigated in Paper D.Measurements were carried out on a test gearbox consisting of a helical gear pair, shafts, tapered roller bearings, and a housing.Vibration measurements were carried out at torque levels of 140 Nm and 400 Nm with 0.15 mm and 0 mm bearing endplay and with 0.15 mm bearing preload.The results shows that the bearing endplay or preload influence gearbox vibrations.Compared with bearings

with endplay, preloaded bearings show an increase in vibrations at speeds over 2000 rpm and a decrease at speeds below 2000 rpm.Figure 3.4.1 is a typical result showing the influence of bearing preload on gearbox housing vibration.After the first measurement, the gearbox was not disassembled or removed from the test rig.Only the bearing preload/endplay was changed from 0 mm endplay/preload to 0.15 mm preload.Therefore the differences between the two measurements are solely due to different bearing preload.FE simulations performed by Sellgren and ?kerblom [6] show the same trend as the measurements here.For the test gearbox, it seems that bearing preload, compared with endplay, decreased the vibrations at speeds below 2000 rpm and increased vibrations at speeds over 2000 rpm, at least at a torque level of 140 Nm.3.5 Paper E: Gear Geometry for Reduced and Robust Transmission Error and Gearbox Noise In Paper E, gearbox noise is reduced by optimization of gear geometry for decreased transmission error.The optimization was not performed strictly mathematically.It was done by calculating the transmission error for different geometries and then choosing a geometry that seemed to be a good compromise considering not only the transmission error, but also other important characteristics.Robustness with respect to gear deviations and varying torque was considered in order to find gear geometry with low transmission error in the appropriate torque range despite deviations from the nominal geometry due to manufacturing tolerances.Static and dynamic transmission error as well as noise and housing vibrations were measured.The correlation between dynamic transmission error, housing vibrations, and noise was investigated in a speed sweep from 500 to 2500 rpm at constant torque.No correlation was found between dynamic transmission error and noise.4 DISCUSSION AND CONCLUSIONS Static loaded transmission error seems to be strongly correlated to gearbox noise.Dynamic transmission error does not seem to be correlated to gearbox noise in speed

sweeps in these investigations.Henriksson [7] found a correlation between dynamic transmission error and gearbox noise when testing a truck gearbox at constant speed and different torque levels.The different test conditions, speed sweep versus constant speed, and the different complexity(a simple test gearbox versus a complete truck gearbox)may explain the different results regarding correlation between dynamic transmission error and gearbox noise.Bearing preload influences gearbox noise, but it is not possible to make any general statement as to whether preload is better than endplay.The answer depends on the frequency and other components in the complex dynamic system of gears, shafts, bearings, and housing.To minimize noise, the gearbox housing should be as rigid as possible.This was proposed by Rook [8], and his views are supported by the results relating to the optimization of a transmission housing described in section 2.5.Finite element analysis is a useful tool for optimizing gearbox housings.5 FUTURE RESEARCH It would be interesting to investigate the correlation between dynamic transmission error and gearbox noise for a complete wheel loader transmission.One challenge would be to measure transmission error as close as possible to the gears and to avoid resonances in the connection between gear and encoder.The dropbox gears in a typical wheel loader transmission are probably the gears that are most easily accessible for measurement using optical encoders.See Figure 5.1.1 for possible encoder positions.Modeling the transmission in more detail could be another challenge for future work.One approach could be to use a model of gears, shafts, and bearings using the transmission error as the excitation.This could be a finite element model or a multibody system model.The output from this model would be the forces at the bearing positions.The forces could be used to excite a finite element model of the housing.The housing model could be used to predict noise radiation, and/or vibration at the attachment points for the gearbox.This approach would give absolute values, not just relative levels.REFERENCES [1] Welbourn D.B., “Fundamental Knowledge of Gear Noise ??A Survey”, Proc.Noise & Vib.of Eng.and Trans., I Mech E., Cranfield, UK, July 1979, pp 9–14.[2] MackAldener M., “Tooth Interior Fatigue Fracture & Robustness of Gears”, Royal Institute of Technology, Doctoral Thesis, ISSN 1400-1179, Stockholm, 2001.[3] Ohio State University, LDP Load Distribution Program, Version 2.2.0, http://www.tmdps.cn/ , 2007.[4] Borner J., and Houser D.R., “Friction and Bending Moments as Gear Noise Excitations”,SAE Technical Paper 961816.[5] Oswald F.B.et al., “Influence of Gear Design on Gearbox Radiated Noise”, Gear Technology, pp 10–15, 1998.[6] Sellgren U., and ?kerblom M., “A Model-Based Design Study of Gearbox Induced Noise”, International Design Conference – Design 2004, May 18-21, Dubrovnik, 2004.[7] Henriksson M., “Analysis of Dynamic Transmission Error and Noise from a Two-stage Gearbox”, Licentiate Thesis, TRITA-AVE-2005:34 / ISSN-1651-7660, Stockholm, 2005.[8] Rook T., “Vibratory Power Flow Through Joints and Bearings with Application to Structural Elements and Gearboxes”, Doctoral Thesis, Ohio State University, 1995.

第三篇:機(jī)械專業(yè)論文課題選擇

四川文理學(xué)院

機(jī)械工程及自動(dòng)化專業(yè)畢業(yè)論文選題指南

課題的選擇:

1、畢業(yè)設(shè)計(jì)(論文)課題的選擇應(yīng)與機(jī)械專業(yè)方向及專業(yè)崗位群需求緊密結(jié)合,學(xué)生可結(jié)合企業(yè)生產(chǎn)、管理、服務(wù)實(shí)際情況及自己的興趣愛好,在指導(dǎo)教師的指導(dǎo)下完成畢業(yè)設(shè)計(jì)(論文)選題及畢業(yè)設(shè)計(jì)(論文)。

2、在掌握文獻(xiàn)資料的基礎(chǔ)上,做好實(shí)際調(diào)查研究。

3、學(xué)生根據(jù)已掌握的資料,針對已選擇課題進(jìn)行分析、論證,提出獨(dú)立見解,在指導(dǎo)教師指導(dǎo)下完成畢業(yè)設(shè)計(jì)(論文)。

畢業(yè)設(shè)計(jì)(論文)部分參考選題方向:

(一)機(jī)械設(shè)計(jì)類畢業(yè)設(shè)計(jì)選題目錄:

01.8英寸鋼管熱浸鍍鋅自動(dòng)生產(chǎn)線設(shè)計(jì) 02.27m3礦用挖掘機(jī)斗桿結(jié)構(gòu)有限元分析 03.140噸懸掛懸掛提升機(jī)及傳感器 04.200米安全鉆機(jī)

05.205t橋式起重機(jī)控制線路設(shè)計(jì)

06.300.400數(shù)控激光切割機(jī)XY工作臺部件及單片機(jī)控制設(shè)計(jì) 07.1041普通貨車制動(dòng)器設(shè)計(jì) 08.“包裝機(jī)對切部件”設(shè)計(jì) 09.AWC機(jī)架現(xiàn)場擴(kuò)孔機(jī)設(shè)計(jì)

10.BW-100型泥漿泵曲軸箱與液力端特性分析、設(shè)計(jì) 11.CA-20地下自卸汽車工作、轉(zhuǎn)向液壓系統(tǒng) 12.CG2-150型仿型切割機(jī)

13.DTⅡ型固定式帶式輸送機(jī)的設(shè)計(jì) 14.DTⅡ型皮帶機(jī)設(shè)計(jì)

15.GBW92外圓滾壓裝置設(shè)計(jì) 16.GCPS20型工程鉆機(jī)

17.J45-6.3型雙動(dòng)拉伸壓力機(jī)的設(shè)計(jì) 18.MQ100 門式起重機(jī)總體

19.NK型凝汽式汽輪機(jī)調(diào)節(jié)系統(tǒng)的設(shè)計(jì)

20.PF455S插秧機(jī)及其側(cè)離合器手柄的探討和改善設(shè)計(jì) 21.PLC控制電梯 22.QG6F切割機(jī)

23.QWJ300型直切機(jī)的設(shè)計(jì) 24.SFY-B-2錘片粉碎機(jī)設(shè)計(jì) 25.SPT120推料裝置

26.UGII中三維建模部分CAI制作

27.UG的三維CAD設(shè)計(jì)和CAM自動(dòng)編程 28.UG應(yīng)用模塊課件的設(shè)計(jì)與制作

29.WE67K-5004000板料折彎機(jī) 30.WY型滾動(dòng)軸承壓裝機(jī)設(shè)計(jì) 31.XQB小型泥漿泵的結(jié)構(gòu)設(shè)計(jì) 32.XS80雙出風(fēng)口籠形轉(zhuǎn)子選粉機(jī) 33.YZJ壓裝機(jī)整機(jī)液壓系統(tǒng)設(shè)計(jì) 34.ZL15型輪式裝載機(jī) 35.板材送進(jìn)夾鉗裝置 36.棒料切割機(jī)

37.筆記本電腦主板裝配線(輸送帶)及其主要夾具的設(shè)計(jì) 38.撥叉加工自動(dòng)線設(shè)計(jì) 39.播種機(jī)設(shè)計(jì)

40.插秧機(jī)系統(tǒng)設(shè)計(jì)

41.茶樹重修剪機(jī)的開發(fā)研究

42.柴油機(jī)數(shù)字化快速設(shè)計(jì)系統(tǒng)中實(shí)例庫的建立 43.柴油機(jī)專用換向閥工藝結(jié)構(gòu)設(shè)計(jì) 44.鏟平機(jī)的設(shè)計(jì)

45.常規(guī)量檢測與控制工程專業(yè)綜合實(shí)驗(yàn)設(shè)計(jì) 46.車載裝置升降系統(tǒng)的開發(fā) 47.城鎮(zhèn)污水處理廠設(shè)計(jì) 48.沖擊回轉(zhuǎn)鉆進(jìn)技術(shù)

49.抽油機(jī)機(jī)械系統(tǒng)設(shè)計(jì)(常規(guī)型)50.出租車計(jì)價(jià)器系統(tǒng)設(shè)計(jì)

51.大型水壓機(jī)的驅(qū)動(dòng)系統(tǒng)和控制系統(tǒng) 52.大型制藥廠熱電冷三聯(lián)供 53.大直徑樁基礎(chǔ)工程成孔鉆具 54.帶式輸送機(jī)傳動(dòng)滾筒的防滑處理 55.帶式輸送機(jī)傳動(dòng)裝置設(shè)計(jì) 56.帶式輸送機(jī)自動(dòng)張緊裝置設(shè)計(jì) 57.單軌抓斗起重機(jī)設(shè)計(jì) 58.彈簧CAD軟件的開發(fā)

59.地下升降式自動(dòng)化立體車庫 60.電動(dòng)自行車調(diào)速系統(tǒng)的設(shè)計(jì) 61.電腦主板回焊爐及控制系統(tǒng)設(shè)計(jì)

62.復(fù)合化肥混合比例裝置及PLC控制系統(tǒng)設(shè)計(jì) 63.電液比例閥設(shè)計(jì) 64.釘磨機(jī)床設(shè)計(jì)

65.多功能自動(dòng)跑步機(jī)(機(jī)械部分設(shè)計(jì))66.二級電液比例節(jié)流閥 67.鋼筋調(diào)直機(jī) 68.鋼筋彎曲機(jī)

69.鋼筋彎曲機(jī)設(shè)計(jì)及其運(yùn)動(dòng)過程虛擬 70.隔水管橫焊縫自動(dòng)對中裝置 71.隔振系統(tǒng)實(shí)驗(yàn)臺總體方案設(shè)計(jì) 72.工程鉆機(jī)的設(shè)計(jì)

73.管套壓裝專機(jī)

74.管套壓裝專機(jī)結(jié)構(gòu)設(shè)計(jì) 75.滾針軸承自動(dòng)裝針機(jī)設(shè)計(jì)

76.機(jī)器人多用途氣動(dòng)機(jī)器人結(jié)構(gòu)設(shè)計(jì) 77.機(jī)器人工業(yè)機(jī)器人 78.機(jī)器人焊接機(jī)器人

79.機(jī)器人集裝箱波紋板焊接機(jī)器人機(jī)構(gòu)運(yùn)動(dòng)學(xué)分析及車體結(jié)構(gòu)設(shè)計(jì) 80.機(jī)器人送料機(jī)械手設(shè)計(jì)

81.機(jī)器人五自由度機(jī)器人結(jié)構(gòu)設(shè)計(jì) 82.機(jī)械手PLC控制機(jī)械手設(shè)計(jì)

83.機(jī)械手-數(shù)控機(jī)床上下料機(jī)械手設(shè)計(jì)

84.機(jī)械手-送料機(jī)械手設(shè)計(jì)及Solidworks運(yùn)動(dòng)仿真 85.機(jī)械手-液壓機(jī)械手

86.機(jī)油冷卻器自動(dòng)裝備線壓緊工位裝備設(shè)計(jì) 87.基于PLC高速全自動(dòng)包裝機(jī)的控制系統(tǒng)應(yīng)用

88.基于ProE的裝載機(jī)工作裝置的實(shí)體建模及運(yùn)動(dòng)仿真 89.基于普通機(jī)床的后托架及夾具設(shè)計(jì)開發(fā)

90.集成電路塑封自動(dòng)上料機(jī)機(jī)架部件設(shè)計(jì)及性能試驗(yàn) 91.減速器2級(帶式運(yùn)輸機(jī)傳動(dòng)設(shè)計(jì))92.減速器2級(三維建模)

93.減速器200米液壓鉆機(jī)變速箱的設(shè)計(jì) 94.減速器單級圓柱齒輪 95.減速器的整體設(shè)計(jì)

96.減速器環(huán)面蝸輪蝸桿減速器 97.減速器減速器的整體設(shè)計(jì) 98.減速器減速器錐柱二級傳動(dòng) 99.減速器三級圓柱齒輪減速器 100.減速器實(shí)驗(yàn)用減速器的設(shè)計(jì) 101.減速器雙齒減速器設(shè)計(jì) 102.減速器同軸式二級圓柱齒輪

103.減速器同軸式二級圓柱齒輪減速器的設(shè)計(jì)

104.減速器用于帶式運(yùn)輸機(jī)傳動(dòng)裝置中的同軸式二級圓柱齒輪減速器 105.減速器運(yùn)輸機(jī)械用減速器 106.減速器軋鋼機(jī)減速器的設(shè)計(jì)

107.減速器自動(dòng)洗衣機(jī)行星齒輪減速器的設(shè)計(jì) 108.減速器二級斜齒圓柱齒輪減速器設(shè)計(jì) 109.攪拌器的設(shè)計(jì)

110.轎車雙擺臂懸架的設(shè)計(jì)及產(chǎn)品建模

111.教育型加工中心總體結(jié)構(gòu)方案與主軸部件設(shè)計(jì) 112.精密播種機(jī) 113.卷板機(jī)設(shè)計(jì)

114.康明斯發(fā)電機(jī)組控制箱系統(tǒng)的設(shè)計(jì) 115.可調(diào)速鋼筋彎曲機(jī)的設(shè)計(jì)

116.課程多媒體課件通用框架的研制(機(jī)械類)

117.空氣壓縮機(jī)V帶校核和噪聲處理 118.空壓機(jī)機(jī)械系統(tǒng)設(shè)計(jì) 119.連桿平行度測量儀

120.鏈驅(qū)動(dòng)雙層升降橫移式車庫

121.螺旋管狀面筋機(jī)總體及坯片導(dǎo)出裝置設(shè)計(jì) 122.馬路保潔車

123.膜片式離合器的設(shè)計(jì) 124.磨粉機(jī)設(shè)計(jì)

125.某大型水壓機(jī)的驅(qū)動(dòng)系統(tǒng)和控制系統(tǒng) 126.普通式雙柱汽車舉升機(jī)設(shè)計(jì) 127.普通鉆床改造為多軸鉆床 128.汽車離合器(EQ153)的設(shè)計(jì) 129.汽車離合器(螺旋430)的設(shè)計(jì) 130.橋式起重機(jī)小車運(yùn)行機(jī)構(gòu)設(shè)計(jì) 131.清淤船的設(shè)計(jì)

132.全自動(dòng)洗衣機(jī)控制系統(tǒng)的設(shè)計(jì) 133.全自動(dòng)制袋機(jī) 134.乳化液泵的設(shè)計(jì)

135.三自由度圓柱坐標(biāo)型工業(yè)機(jī)器人設(shè)計(jì) 136.三坐標(biāo)測量機(jī) 137.升降機(jī)的設(shè)計(jì)

138.生產(chǎn)線上運(yùn)輸升降機(jī)的自動(dòng)化設(shè)計(jì) 139.石油管螺紋保護(hù)帽旋壓專用設(shè)備設(shè)計(jì) 140.數(shù)控軸承磨床砂輪修整裝置設(shè)計(jì) 141.雙齒輥破碎機(jī)的設(shè)計(jì)

142.雙鉸接剪叉式液壓升降臺的設(shè)計(jì) 143.雙柱機(jī)械式汽車舉升機(jī) 144.雙柱式機(jī)械式舉升機(jī)設(shè)計(jì)

145.四層樓電梯自動(dòng)控制系統(tǒng)的設(shè)計(jì) 146.鐵水澆包傾轉(zhuǎn)機(jī)構(gòu)的設(shè)計(jì) 147.外行星擺線馬達(dá)結(jié)構(gòu)設(shè)計(jì) 148.外圓磨床設(shè)計(jì)

149.萬能外圓磨床液壓傳動(dòng)系統(tǒng)設(shè)計(jì) 150.渦輪盤液壓立拉夾具 151.臥式鋼筋切斷機(jī)的設(shè)計(jì) 152.無軸承電機(jī)

153.五噸電動(dòng)單梁橋式起重機(jī)的設(shè)計(jì) 154.巷道堆垛類自動(dòng)化立體車庫 155.巷道式自動(dòng)化立體車庫升降部分 156.小型軋鋼機(jī)設(shè)計(jì) 157.鋼筋校直機(jī)設(shè)計(jì)

158.新KS型單級單吸離心泵的設(shè)計(jì)

159.新型組合式選粉機(jī)總體及分級部分設(shè)計(jì) 160.旋耕機(jī)的設(shè)計(jì)

161.旋耕機(jī)設(shè)計(jì)(2)162.旋轉(zhuǎn)門的設(shè)計(jì)

163.壓燃式發(fā)動(dòng)機(jī)油管殘留測量裝置設(shè)計(jì) 164.鹽酸分解磷礦裝置設(shè)計(jì) 165.液位平衡控制系統(tǒng)實(shí)驗(yàn)

166.液位平衡控制系統(tǒng)實(shí)驗(yàn)裝置設(shè)計(jì) 167.液壓絞車設(shè)計(jì)

168.液壓式雙頭套皮輥機(jī) 169.液壓缸設(shè)計(jì)

170.玉米脫粒機(jī)設(shè)計(jì) 171.軋鋼機(jī)設(shè)計(jì)

172.榨汁機(jī)設(shè)計(jì)(無圖)173.振動(dòng)打樁錘的設(shè)計(jì) 174.知識競賽搶答器設(shè)計(jì)

175.直動(dòng)式單級(常規(guī)型 6升)比例控制壓力閥的設(shè)計(jì) 176.中單鏈型刮板輸送機(jī)設(shè)計(jì) 177.設(shè)計(jì)自動(dòng)沖孔機(jī) 178.自動(dòng)立體車庫設(shè)計(jì) 179.自動(dòng)售貨機(jī)設(shè)計(jì) 180.設(shè)計(jì)自動(dòng)跳繩機(jī)

181.設(shè)計(jì)自動(dòng)涂膠機(jī)器人系統(tǒng)(控制)182.設(shè)計(jì)自動(dòng)彎管機(jī)

183.-自動(dòng)彎管機(jī)裝置及其電器設(shè)計(jì) 184.-自行車變速系統(tǒng)的設(shè)計(jì) 185.20米T梁畢業(yè)設(shè)計(jì)

186.設(shè)計(jì)R175型柴油機(jī)機(jī)體加工自動(dòng)線上多功能氣壓機(jī)械手 187.半自動(dòng)液壓專用銑床液壓系統(tǒng)設(shè)計(jì)

188.帶式運(yùn)輸機(jī)用的二級圓柱齒輪減速器設(shè)計(jì) 189.單螺桿飼料膨化機(jī)的設(shè)計(jì) 190.二級直齒輪減速器設(shè)計(jì)

191.設(shè)計(jì)二維影象儀的發(fā)展和應(yīng)用 192.機(jī)械手的設(shè)計(jì) 193.設(shè)計(jì)家用空調(diào)

194.設(shè)計(jì)金屬切削加工車間設(shè)備布局與管理 195.顆粒狀糖果包裝機(jī)設(shè)計(jì) 196.螺旋千斤頂設(shè)計(jì)

197.設(shè)計(jì)內(nèi)蒙古包頭市磴口水廠 198.平面關(guān)節(jié)型機(jī)械手設(shè)計(jì) 199.橋梁式集裝箱起重機(jī)設(shè)計(jì) 200.橋式起重機(jī)副起升機(jī)構(gòu)設(shè)計(jì) 201.設(shè)計(jì)青飼料切割機(jī)

202.設(shè)計(jì)數(shù)控機(jī)床自動(dòng)夾持搬運(yùn)裝置 203.四柱壓機(jī)液壓系統(tǒng)設(shè)計(jì)

204.設(shè)計(jì)橢圓蓋板的宏程序編程與自動(dòng)編程

205.設(shè)計(jì)五層教學(xué)樓

206.設(shè)計(jì)斜齒圓柱齒輪減速器裝配圖及其零件圖 207.設(shè)計(jì)一用于帶式運(yùn)輸機(jī)上的傳動(dòng)及減速裝置 208.軸向柱塞泵設(shè)計(jì)

209.自行車無級變速器設(shè)計(jì) 210.絞肉機(jī)的設(shè)計(jì)

211.YTP26氣腿式鑿巖機(jī)機(jī)體工藝及夾具設(shè)計(jì) 212.壓力機(jī)與墊板間夾緊裝置的設(shè)計(jì) 213.雙頭車床的液壓系統(tǒng)設(shè)計(jì) 214.內(nèi)曲面砂帶磨削裝置設(shè)計(jì) 215.變量施肥機(jī)械的設(shè)計(jì)

216.地埋式環(huán)保垃圾箱裝置液壓 217.滾輪式離心鑄造機(jī)設(shè)計(jì) 218.夾體自動(dòng)卸料機(jī)的設(shè)計(jì) 219.取物機(jī)械手的液壓控制系統(tǒng)

220.φ300高鋼度小型棒材軋機(jī)主傳動(dòng)裝置的設(shè)計(jì) 221.小型鋼坯步進(jìn)式加熱爐液壓傳動(dòng)系統(tǒng) 222.人力手推式草坪割草機(jī)

223.臥式單面多軸鉆孔機(jī)床液壓系統(tǒng)設(shè)計(jì) 224.高爐料鐘液壓啟閉同步系統(tǒng) 225.與中馬力配套的噴霧機(jī)的研究

226.1300毫米熱鋸機(jī)液壓傳動(dòng)系統(tǒng)的設(shè)計(jì) 227.中型汽車修理舉升臺 228.200米鉆機(jī)回轉(zhuǎn)器設(shè)計(jì)

229.NMNC—1型數(shù)控銑床設(shè)計(jì) 230.汽車離合器的設(shè)計(jì) 231.增力清潔三輪車

232.法蘭盤加工的回轉(zhuǎn)工作臺設(shè)計(jì) 233.液壓加緊動(dòng)力裝置

234.組合機(jī)床液壓系統(tǒng)畢業(yè)設(shè)計(jì)

235.GCD-1500工程鉆機(jī)啟動(dòng)過程中的主離合器

236.MG250591-WD型采煤機(jī)右搖臂殼體的加工工藝規(guī)程及數(shù)控編程 237.YA32-315四柱萬能液壓機(jī) 238.YN32200四柱式液壓機(jī) 239.泵體多軸鉆設(shè)計(jì)

240.泵體多軸鉆設(shè)計(jì)(臥)

241.變頻試驗(yàn)臺直線運(yùn)動(dòng)機(jī)構(gòu)及基于S7-200速度示教系統(tǒng)控制軟件與上位監(jiān)控系統(tǒng)設(shè)計(jì)

242.并聯(lián)機(jī)床設(shè)計(jì)

243.并聯(lián)機(jī)床實(shí)驗(yàn)臺總體結(jié)構(gòu)設(shè)計(jì) 244.自上式垃圾運(yùn)輸車

245.玻璃橫切結(jié)構(gòu)及人機(jī)界面系統(tǒng)設(shè)計(jì) 246.薄煤層采煤機(jī)設(shè)計(jì)輸出 247.磁力管道爬行機(jī)器人

248.大尺寸多工步自動(dòng)推料進(jìn)給裝置及控制數(shù)據(jù)管理系統(tǒng)設(shè)計(jì) 249.電葫蘆機(jī)械系統(tǒng)設(shè)計(jì)文件 250.風(fēng)機(jī)狀態(tài)測試系統(tǒng)的總體設(shè)計(jì) 251.蜂窩煤成型機(jī)設(shè)計(jì) 252.鋼筋調(diào)直機(jī)

253.高低壓道路清洗車系統(tǒng)設(shè)計(jì)輸出 254.輥式矯平機(jī)

255.換刀機(jī)械手設(shè)計(jì) 256.化工換熱器

257.機(jī)床夾具柔性化技術(shù)研究及設(shè)計(jì)

258.基于虛擬測試技術(shù)的風(fēng)機(jī)狀態(tài)測試系統(tǒng)的設(shè)計(jì) 259.交流永磁直線電機(jī)及其伺服控制系統(tǒng)的設(shè)計(jì) 260.靜液壓三驅(qū)伸縮臂叉車驅(qū)動(dòng)方案的設(shè)計(jì) 261.卷筒衛(wèi)生紙自動(dòng)包裝機(jī)

262.立體車庫的內(nèi)部機(jī)械結(jié)構(gòu)的優(yōu)化設(shè)計(jì) 263.螺旋液壓沉樁機(jī)機(jī)械部分設(shè)計(jì) 264.模具轉(zhuǎn)位盤驅(qū)動(dòng)器設(shè)計(jì) 265.噴涂機(jī)械手的設(shè)計(jì)

266.啤酒桶清洗機(jī)的設(shè)計(jì)及PLC控制 267.平壓印刷機(jī)設(shè)計(jì)

268.氣動(dòng)機(jī)械手回轉(zhuǎn)臂結(jié)構(gòu)設(shè)計(jì) 269.氣動(dòng)機(jī)械手升降臂結(jié)構(gòu)設(shè)計(jì) 270.氣浮式動(dòng)平衡機(jī)設(shè)計(jì) 271.氣壓傳動(dòng)機(jī)械手設(shè)計(jì) 272.塑料粉末靜電噴涂生產(chǎn)線 273.探測機(jī)器人系統(tǒng)的設(shè)計(jì) 274.推土機(jī)設(shè)計(jì)

275.五菱微車后門導(dǎo)滑槽液壓機(jī)設(shè)計(jì)

276.小型多工步自動(dòng)推料進(jìn)給裝置及溫控、上位顯示系統(tǒng)設(shè)計(jì) 277.小型風(fēng)力發(fā)電機(jī)總體結(jié)構(gòu)的設(shè)計(jì) 278.小型風(fēng)力發(fā)電機(jī)組動(dòng)力結(jié)構(gòu)設(shè)計(jì) 279.小型模具柔性制造系統(tǒng)設(shè)計(jì) 起重機(jī) 280.新型叉車門架系統(tǒng)設(shè)計(jì)輸出 281.旋轉(zhuǎn)型灌裝機(jī)的設(shè)計(jì) 282.液壓旋鉚機(jī)設(shè)計(jì) 283.圓柱機(jī)械手設(shè)計(jì)

284.支撐目標(biāo)運(yùn)動(dòng)機(jī)構(gòu)技術(shù)設(shè)計(jì) 285.中成藥瓶蓋旋緊機(jī)械手設(shè)計(jì) 286.自動(dòng)更換芯模機(jī)械手設(shè)計(jì) 287.排污車自動(dòng)清污裝置設(shè)計(jì)

288.電冰箱門體發(fā)泡自動(dòng)化生產(chǎn)線進(jìn)行改進(jìn)設(shè)計(jì) 289.機(jī)器人手腕及夾持器的設(shè)計(jì) 290.油管運(yùn)輸機(jī)器人設(shè)計(jì) 291,農(nóng)用三輪車設(shè)計(jì)

292,OCL功率放大器.doc 293,直流穩(wěn)壓電源的設(shè)計(jì).doc 294,果蔬原料去皮機(jī)設(shè)計(jì)

295.C620普遍車床的數(shù)控化改造(本科)296.組合件數(shù)控車工藝與編程 297.汽車變速箱上蓋工藝夾具設(shè)計(jì)

299.流水線工位上料機(jī)液壓系統(tǒng)設(shè)計(jì)設(shè)計(jì)輸出 300.雙面臥式攻絲機(jī)床設(shè)計(jì)

301.dt250斗式提升機(jī)全套 畢業(yè)設(shè)計(jì)(水泥谷物)U70449.rarU70449 302.qy40型液壓起重機(jī)液壓系統(tǒng)設(shè)計(jì)計(jì)算說明書.附cad圖3v2l1e 303.TGSS-50型水平刮板輸送機(jī)---機(jī)頭段設(shè)計(jì)U70449 304.汽車安全氣囊應(yīng)用研究學(xué) 305.畢業(yè)設(shè)計(jì)-花生去殼機(jī) 306.采煤機(jī)截割部的整體設(shè)計(jì) 307.叉車設(shè)計(jì)

308.齒輥破碎機(jī)詳細(xì)設(shè)計(jì)6w5y2t 309.帶式二級圓錐圓柱齒輪減速器設(shè)計(jì) 310.飛機(jī)起落架設(shè)計(jì) 311.風(fēng)力發(fā)電機(jī)

312.鋼筋彎曲機(jī)(發(fā)客戶)313.谷物運(yùn)輸機(jī)傳動(dòng)裝置設(shè)計(jì) 314.靜扭試驗(yàn)臺的設(shè)計(jì)

315.可調(diào)速鋼筋彎曲機(jī)的設(shè)計(jì) 316.礦井水倉清理工作的機(jī)械化 317.礦用液壓支架的設(shè)計(jì)

318.納米粉體的實(shí)驗(yàn)裝置畢業(yè)設(shè)計(jì)U70449 319.齊齊哈爾大學(xué)傳動(dòng)剪板機(jī)設(shè)計(jì) 320.起重機(jī)設(shè)計(jì)3n6l9x 321.起重機(jī)總體設(shè)計(jì)及金屬結(jié)構(gòu)設(shè)計(jì) 322.汽車差速器及半軸設(shè)計(jì) 323.切管機(jī)畢業(yè)設(shè)計(jì) 324.青飼料切割機(jī)

325.清車機(jī)畢業(yè)設(shè)計(jì)(打?。?26.雙螺桿壓縮機(jī)的設(shè)計(jì) 327.提升機(jī)制動(dòng)系統(tǒng) 328.穩(wěn)罐裝置

329.銑床的數(shù)控x-y工作臺設(shè)計(jì) 330.液壓控制閥的理論研究與設(shè)計(jì) 331.移動(dòng)式x光機(jī)總體及移轉(zhuǎn)組件設(shè)計(jì) 332.軸向柱塞泵設(shè)計(jì)

333.株洲工學(xué)院XK5040數(shù)控立式銑床及控制系統(tǒng)設(shè)計(jì) 334.常用機(jī)構(gòu)認(rèn)識,分析與測繪(PPT)

335.10KW圓錐-圓柱齒輪減速器的設(shè)計(jì)(只論文)336.plc銑床(只論文)

337.茶葉修剪機(jī)(只論文)

338.齒輪泵的研究與三維造型設(shè)計(jì)(只論文)339.齒輪鏈輪套件設(shè)計(jì)(只論文)340.多功能刷地機(jī)設(shè)計(jì)(只論文)341.管道清灰機(jī)器人設(shè)計(jì)(只論文)

342.普通帶式輸送機(jī)的設(shè)計(jì)論文(只論文)343.巧克力包裝機(jī)設(shè)計(jì)(只論文)344.送料機(jī)(只論文)

345.2J550×3000雙軸拌合機(jī)設(shè)計(jì) 346.液壓綜合實(shí)驗(yàn)臺設(shè)計(jì)

(二)工藝類畢業(yè)設(shè)計(jì)選題目錄

CA6140車床尾座體工藝工裝設(shè)計(jì)

1.MG250591-WD型采煤機(jī)右搖臂殼體的加工工藝規(guī)程及數(shù)控編程 2.WH212減速機(jī)殼體加工工藝及夾具設(shè)計(jì)

3.X62W銑床主軸機(jī)械加工工藝規(guī)程與鉆床夾具設(shè)計(jì) 4.X5020B立式升降臺銑床拔叉殼體工藝規(guī)程制訂 5.C6410車床撥叉.卡具設(shè)計(jì) 6.車床手柄座加工夾具設(shè)計(jì) 7.蓋套類零件知識庫及工藝 8.曲軸工藝設(shè)計(jì)及夾具設(shè)計(jì)

9.曲軸箱零件加工工藝及夾具設(shè)計(jì) 10.數(shù)控銑床編程實(shí)例分析 11.銑斷夾具設(shè)計(jì)

12.“填料箱蓋”零件的工藝規(guī)程及鉆孔夾具設(shè)計(jì) 13.CA6140機(jī)床后托架加工工藝及夾具設(shè)計(jì)

14.CA6140型鋁活塞的機(jī)械加工工藝設(shè)計(jì)及夾具設(shè)計(jì)

15.MG132320-W型采煤左牽引部機(jī)殼的加工工藝規(guī)程及數(shù)控編程 16.SSCK20A數(shù)控車床主軸和箱體加工編程 17.WHX112減速機(jī)殼加工工藝及夾具設(shè)計(jì)

18.Z90型電動(dòng)閥門裝置及數(shù)控加工工藝的設(shè)計(jì) 19.回轉(zhuǎn)盤工藝規(guī)程設(shè)計(jì)及鏜孔工序夾具設(shè)計(jì) 20.加工渦輪盤榫槽的臥式拉床夾具 21.殼體的工藝與工裝的設(shè)計(jì)

22.前剎車調(diào)整臂外殼的機(jī)械加工的工藝過程及工裝設(shè)計(jì) 23.填料箱蓋夾具設(shè)計(jì)

24.支承套零件加工工藝編程及夾具 25.CA6140撥叉831005設(shè)計(jì)

26.CA6140車床法蘭盤的加工工藝夾具

27.柴油機(jī)連桿體的機(jī)械加工工藝規(guī)程的編制 28.車床變速箱中拔叉及專用夾具設(shè)計(jì) 29.車床撥叉夾具

30.電織機(jī)導(dǎo)板零件數(shù)控加工工藝與工裝設(shè)計(jì) 31.分度鉆孔夾具設(shè)計(jì)

32.后鋼板彈簧吊耳的加工工藝

33.銅質(zhì)鍍銀活動(dòng)觸頭側(cè)平面銑削用夾具 34.推動(dòng)架設(shè)計(jì)

35.彎管的數(shù)控加工與工藝分析

36.錫林右軸承座組件工藝及夾具設(shè)計(jì)

37.-箱體類零件工藝分析及知識庫研究(減速機(jī))

38.“CA6140法蘭盤”零件的機(jī)械加工工藝規(guī)程及工藝裝備 39.CA6140車床后托架的加工工藝與鉆床夾具設(shè)計(jì) 40.CA6140杠桿加工工藝

41.CA6140杠桿加工工藝及夾具設(shè)計(jì) 42.X5020B立式升降臺銑床撥叉殼體 43.Z3050搖臂鉆床預(yù)選閥體機(jī)械加工工 44.半軸機(jī)械加工工藝及工裝設(shè)計(jì) 45.撥叉零件工藝分析及加工 46.叉桿零件

47.柴油機(jī)連桿的加工工藝

48.齒輪泵前蓋的數(shù)控加工和三維造型

49.齒輪架零件的機(jī)械加工工藝規(guī)程及專用夾具設(shè)計(jì) 50.傳動(dòng)齒輪工藝設(shè)計(jì) 51.單拐曲軸機(jī)械加工工藝

52.低速級斜齒輪零件的機(jī)械加工工藝規(guī)程 53.端面齒盤的設(shè)計(jì)與加工 54.惰輪軸工藝設(shè)計(jì)和工裝設(shè)計(jì) 55.法蘭零件夾具設(shè)計(jì) 56.方向機(jī)殼鉆夾具設(shè)計(jì)

57.分離爪工藝規(guī)程和工藝裝備設(shè)計(jì) 58.杠桿工藝和工裝設(shè)計(jì) 59.杠桿設(shè)計(jì)

60.過橋齒輪軸機(jī)械加工工藝規(guī)程 61.后鋼板彈簧吊耳的工藝和工裝設(shè)計(jì)

62.活塞的機(jī)械加工工藝,典型夾具及其CAD設(shè)計(jì) 63.機(jī)座工藝設(shè)計(jì)與工裝設(shè)計(jì) 64.減速箱體工藝設(shè)計(jì)與工裝設(shè)計(jì) 65.漸開線渦輪數(shù)控工藝及加工 66.空氣壓縮機(jī)曲軸零件 67.連桿零件加工工藝

68.美國賽車連桿專用工裝夾具設(shè)計(jì) 69.氣門搖臂軸支座 70.十字接頭零件分析 71.輸出軸的工裝工藝設(shè)計(jì) 72.輸出軸工藝與工裝設(shè)計(jì) 73.套筒機(jī)械加工工藝規(guī)程制訂

74.推動(dòng)架”零件的機(jī)械加工工藝及夾具設(shè)計(jì) 75.斜聯(lián)結(jié)管數(shù)控加工和工藝

76.支架零件圖設(shè)計(jì) 77.總泵缸體加工設(shè)計(jì)

78.組合件數(shù)控車工藝與編程

79.鉆泵體蓋6-φ2孔機(jī)床與夾具圖紙 80.鉆泵體蓋6-φ7孔機(jī)床與夾具圖紙 81.汽車變速器體的工藝及夾具設(shè)計(jì) 82.油缸套的加工工藝設(shè)計(jì)

83.YTP26氣腿式鑿巖機(jī)機(jī)體工藝及夾具設(shè)計(jì) 84.工藝撥叉的上數(shù)控工藝及數(shù)控編程

85.搖柄澆注模模型建模及數(shù)控加工工藝設(shè)計(jì)與仿真加工 86.鼠標(biāo)模型建模及數(shù)控加工工藝設(shè)計(jì)與實(shí)際加工 87.無級變速器后殼體的數(shù)控工藝與加工 88.車床手柄座夾具設(shè)計(jì) 89.世紀(jì)星車削數(shù)控編程 90.軸類零件工藝設(shè)計(jì)

91.基于PROE的抽油機(jī)部件的三維實(shí)體仿真設(shè)計(jì) 92.殼體工藝夾具設(shè)計(jì) 93.殼體2工藝夾具設(shè)計(jì) 94.殼體3工藝夾具設(shè)計(jì) 95.法蘭零件夾具設(shè)計(jì)

96.殼體零件機(jī)械加工工藝規(guī)程制訂及工藝裝備設(shè)計(jì) 97.輸出軸工藝與工裝設(shè)計(jì)

98.設(shè)計(jì)閥蓋零件的機(jī)械加工工藝規(guī)程及4-Φ14H8工藝裝備 99.汽車后輪輪轂的工藝工裝設(shè)計(jì)

100.C620普遍車床的數(shù)控化改造(本科)102.標(biāo)牌雕刻數(shù)控加工工藝設(shè)計(jì) 103.柴油機(jī)噴油泵的專用夾具設(shè)計(jì)

104.齒輪箱工藝及鉆2-φ20孔、工裝及專機(jī)設(shè)計(jì)U70449 105.典型零件的加工藝分析及工裝夾具設(shè)計(jì) 106.杠桿及夾具體設(shè)計(jì)

107.活塞結(jié)構(gòu)設(shè)計(jì)與工藝設(shè)計(jì) 108.填料箱蓋夾具設(shè)計(jì)

109.組合件數(shù)控車工藝與編程

110.減速器機(jī)體工藝規(guī)程及工裝夾具設(shè)計(jì) 111.齒輪軸零件的數(shù)控加工工藝與工裝 112.GS06閘板配合件工藝設(shè)計(jì)與編程

(三)模具類畢業(yè)設(shè)計(jì)選題目錄:

1.(560×450×279)塑料水槽及其注模具設(shè)計(jì) 2.USB接口插件彎曲模具設(shè)計(jì) 3.Φ146.6藥瓶注塑模設(shè)計(jì) 4.冰箱調(diào)溫按鈕塑模設(shè)計(jì) 5.沖單孔墊圈模具設(shè)計(jì)

6.電機(jī)炭刷架冷沖壓模具設(shè)計(jì)

7.墊片2冷沖模設(shè)計(jì) 8.級進(jìn)模模具設(shè)計(jì)

9.冷沖(連接片級進(jìn)模)10.旅行餐碗注塑模設(shè)計(jì) 11.手機(jī)后蓋注塑模的設(shè)計(jì) 12.漱口杯注塑模設(shè)計(jì)

13.童心吸水杯杯蓋注塑模設(shè)計(jì) 14.童心吸水杯注塑模設(shè)計(jì) 15.彎管接頭塑料模設(shè)計(jì) 16.把手封條(模具)17.波輪注射模設(shè)計(jì)

18.電池板鋁邊框沖孔模的設(shè)計(jì) 19.電風(fēng)扇旋扭的塑料模具設(shè)計(jì) 20.多用工作燈后蓋注塑模 21.肥皂盒注塑模

22.封閉板成形模及沖壓工藝設(shè)計(jì) 23.光驅(qū)外客注射模設(shè)計(jì) 24.機(jī)油蓋注塑模具的設(shè)計(jì) 25.鉸鏈落料沖孔復(fù)合模具設(shè)計(jì) 26.離合器板沖成形模具設(shè)計(jì) 27.手機(jī)充電器塑料模具 28.手機(jī)飾板沖壓模具設(shè)計(jì) 29.水管三通管塑料模具 30.塑料傳動(dòng)支架

31.五金-筆記本電腦殼上殼沖壓模設(shè)計(jì) 32.五金-沖大小墊圈復(fù)合模

33.五金-帶槽三角形固定板沖圓孔、沖槽、落料連續(xù)模設(shè)計(jì) 34.五金-蓋冒墊片

35.注塑-注射器蓋畢業(yè)設(shè)計(jì) 36.五金-護(hù)罩殼側(cè)壁沖孔模設(shè)計(jì)

37.五金-空氣濾清器殼正反拉伸復(fù)合模設(shè)計(jì) 38.揚(yáng)聲器模具設(shè)計(jì) 39.注塑-PDA模具設(shè)計(jì)

40.注塑-wk外殼注塑模實(shí)體設(shè)計(jì)過程 41.注塑-底座注塑模

42.注塑-電流線圈架塑料模設(shè)計(jì) 43.注塑-對講機(jī)外殼注射模設(shè)計(jì) 44.注塑-閥銷注射模設(shè)計(jì) 45.注塑-方便飯盒上蓋設(shè)計(jì) 46.注塑-肥皂盒模具設(shè)計(jì) 47.注塑-鬧鐘后蓋畢業(yè)設(shè)計(jì) 48.注塑-瓶蓋注塑模設(shè)計(jì)

49.注塑-普通開關(guān)按鈕模具設(shè)計(jì) 50.注塑-軟管接頭模具設(shè)計(jì)

51.注塑-手機(jī)充電器的模具設(shè)計(jì) 52.注塑-鼠標(biāo)上蓋注射模具設(shè)計(jì) 53.注塑-塑料掛鉤座注射模具設(shè)計(jì) 54.注塑-塑料架注射模具設(shè)計(jì) 55.注塑-玩具模具設(shè)計(jì)

56.注塑-香水蓋子及模具設(shè)計(jì)

57.注塑-小電機(jī)外殼造型和注射模具設(shè)計(jì) 58.注塑-斜齒輪注射模

59.注塑-心型臺燈塑料注塑模具畢業(yè)設(shè)計(jì) 60.注塑-旋紐模具的設(shè)計(jì) 61.注塑-牙簽合蓋注射模設(shè)計(jì) 62.注塑-游戲機(jī)按鈕注塑模具設(shè)計(jì)

63.《仿真分析在冷沖模設(shè)計(jì)中的應(yīng)用》 64.沖壓-托板沖模畢業(yè)設(shè)計(jì) 65.盒形件落料拉深模設(shè)計(jì) 66.-拉深模設(shè)計(jì)

67.落料,拉深,沖孔復(fù)合模

68.五金-湖南Y12型拖拉機(jī)輪圈落料與首次 69.注塑-軸承端蓋模具的加工 70.注塑-Z形件彎曲模設(shè)計(jì) 71.注塑-筆蓋的模具設(shè)計(jì) 72.注塑-電源盒注射模設(shè)計(jì) 73.注塑-調(diào)節(jié)器連接件設(shè)計(jì)

74.注塑-放大鏡模具的設(shè)計(jì)與制造 75.注塑-肥皂盒模具的設(shè)計(jì) 76.注塑-機(jī)油蓋注塑模具設(shè)計(jì)

77.注塑-內(nèi)螺紋管接頭注塑模具設(shè)計(jì) 78.注塑-鼠標(biāo)蓋設(shè)計(jì)

79.注塑-塑料電話接線盒注射模設(shè)計(jì) 80.注塑-塑料模具設(shè)計(jì) 81.注塑-橢圓蓋注射模設(shè)計(jì)

82.注塑-五寸軟盤蓋注射模具設(shè)計(jì) 83.注塑-儀器連接板注塑模設(shè)計(jì)

84.傳動(dòng)蓋沖壓工藝制定及沖孔模具設(shè)計(jì) 85.放音機(jī)機(jī)殼注射模設(shè)計(jì) 86.夾子沖壓件設(shè)計(jì)

87.酒瓶內(nèi)蓋塑料模具設(shè)計(jì) 88.濾油器支架模具設(shè)計(jì) 89.汽車蓋板沖裁模設(shè)計(jì) 90.三通管的塑料模設(shè)計(jì) 91.四墊圈復(fù)合模

92.型星齒輪的注塑模設(shè)計(jì) 93.壓鑄作業(yè)設(shè)計(jì)

94.自行車腳蹬內(nèi)板多工位級進(jìn)模設(shè)計(jì)

95.旋臂蓋塑料模具設(shè)計(jì) 96.CD盒注射模畢業(yè)設(shè)計(jì) 97.接線座塑料模具設(shè)計(jì) 98.電風(fēng)扇葉片的塑料模設(shè)計(jì) 99.套座注射模

100.彎管接頭的塑料模設(shè)計(jì) 101.漁具旋臂的塑料模設(shè)計(jì)

102.大功率三極管管腳級進(jìn)模設(shè)計(jì)

103.EPSON打印機(jī)打印傳送帶架注射模具設(shè)計(jì) 104.沖孔-落料倒裝復(fù)合沖裁模具設(shè)計(jì) 105.電子送料器卡片沖壓模具設(shè)計(jì) 106.和面機(jī)面板沖裁模具設(shè)計(jì) 107.汽車附件調(diào)角器上的連動(dòng)板Ⅱ 108.成型板件沖模設(shè)計(jì) 109.勾板的級進(jìn)模設(shè)計(jì)

110.ILB3型水田耕整機(jī)箱蓋座板落料沖方孔復(fù)合模 111.高檔不銹鋼保溫杯過濾盤落料拉深模具設(shè)計(jì) 112.卡蓋注射成型模具的設(shè)計(jì) 113.臺式電腦立式機(jī)箱前面 114.方便米飯盒蓋注塑模具板 115.新型端蓋無毛刺沖孔模具 116.q型絕緣螺釘設(shè)計(jì)與制造 117.電池槽蓋的塑料模設(shè)計(jì)

118.電話機(jī)聽筒外殼注射模具設(shè)計(jì) 119.多格盒注塑模設(shè)計(jì)

120.風(fēng)道殼體工藝分析及注射模具設(shè)計(jì) 121.蓋子塑料模具設(shè)計(jì) 122.空心球柄塑料模設(shè)計(jì)

123.手機(jī)卡壓蓋沖壓模具的設(shè)計(jì)及凸模的加工仿真 124.無繩電話手機(jī)上殼注射模設(shè)計(jì) 125.線圈骨架注塑模具的設(shè)計(jì) 126.線圈骨架注塑模具的設(shè)計(jì) 127.管座及其加工模具的設(shè)計(jì) 128.撥叉復(fù)合沖裁模的設(shè)計(jì)與制造 129.冰箱調(diào)溫按鈕塑模設(shè)計(jì) 130.傳動(dòng)座架冷沖壓模具設(shè)計(jì) 131.MP3外殼注塑模具設(shè)計(jì) 132.旋紐模具的設(shè)計(jì) 133.手機(jī)塑料外殼注塑模 134.手機(jī)后殼CADCAM設(shè)計(jì)

135.汽車玻璃升降器外殼冷沖壓工藝與模具設(shè)計(jì) 136.電話機(jī)底座注射模設(shè)計(jì)

137.[A3-019]注塑模-圓珠筆筆蓋的模具設(shè)計(jì) 138.-電機(jī)炭刷架冷沖壓模具設(shè)計(jì)

139.帶心行圖案的把手水杯設(shè)計(jì)--杯子模具 140.沖壓汽車燈罩模具設(shè)計(jì) 141.電子鐘后蓋注射模具設(shè)計(jì) 142.蓋子零件注射模設(shè)計(jì) 143.經(jīng)典細(xì)水口模具圖 144.冷沖模設(shè)計(jì)

145.清新劑盒蓋注射模設(shè)計(jì) 146.洗衣機(jī)機(jī)蓋的注塑模具設(shè)計(jì) 147.鑰匙模具設(shè)計(jì)

148.MP3的前后蓋的模具設(shè)計(jì)(只論文)149.剎車片沖壓模具設(shè)計(jì)(只論文)

150.雨刷機(jī)加強(qiáng)板修邊沖孔模三維設(shè)計(jì)(只論文)151.片狀彈簧沖壓級進(jìn)模畢業(yè)設(shè)計(jì)

152.彩色迷你塑料盆景花盆注塑模具設(shè)計(jì) 153.越野車車門外板的激光焊接夾具設(shè)計(jì) 154.自行車腳蹬內(nèi)板沖孔翻邊落料模的設(shè)計(jì) 155.墊片冷沖壓工藝及模具設(shè)計(jì)

(四)機(jī)床設(shè)計(jì)類選題目錄:

1.92Q型氣缸蓋雙端面銑削組合銑床總體設(shè)計(jì) 2.102機(jī)體齒飛面孔雙臥多軸組合機(jī)床及CAD設(shè)計(jì) 3.BL系列臺車設(shè)計(jì)(床腳、防護(hù)罩)4.BL系列臺車設(shè)計(jì)(進(jìn)給箱部分)5.BL系列臺車中的床身與尾架的設(shè)計(jì) 6.C618數(shù)控車床的主傳動(dòng)系統(tǒng)設(shè)計(jì) 7.C6163車床中心架設(shè)計(jì) 8.CA6140車床主軸箱的設(shè)計(jì)

9.CA6140普通車床的數(shù)控技術(shù)改造 10.CA6140型車床的經(jīng)濟(jì)型數(shù)控改造 11.CJK6132數(shù)控車床及其控制系統(tǒng)設(shè)計(jì)

12.G41J6型閥體雙面鉆24孔專機(jī)上的專用夾具設(shè)計(jì)

13.S195柴油機(jī)機(jī)體三面精鏜組合機(jī)床總體設(shè)計(jì)及夾具設(shè)計(jì) 14.S195柴油機(jī)體三面精鏜組合機(jī)床總體設(shè)計(jì)及后主軸箱設(shè)計(jì) 15.TH5940型數(shù)控加工中心進(jìn)給系統(tǒng)設(shè)計(jì)

16.ZH1105柴油機(jī)氣缸體三面攻螺紋組合機(jī)床(左主軸箱)設(shè)計(jì) 17.半精鏜及精鏜氣缸蓋導(dǎo)管孔組合機(jī)床設(shè)計(jì)(夾具設(shè)計(jì))18.半精鏜及精鏜氣缸蓋導(dǎo)管孔組合機(jī)床設(shè)計(jì)(鏜削頭設(shè)計(jì))19.柴油機(jī)齒輪室蓋鉆鏜專機(jī)總體及夾具設(shè)計(jì) 20.柴油機(jī)齒輪室蓋鉆鏜專機(jī)總體及主軸箱設(shè)計(jì)

21.柴油機(jī)氣缸體頂?shù)酌娲帚娊M合機(jī)床總體及夾具設(shè)計(jì) 22.車床數(shù)控改造

23.車床主軸箱箱體右側(cè)10M8螺紋底孔組合鉆床設(shè)計(jì) 24.車床主軸箱箱體左側(cè)8M8螺紋攻絲機(jī)設(shè)計(jì) 25.粗鏜活塞銷孔專用機(jī)床及夾具設(shè)計(jì) 26.電機(jī)驅(qū)動(dòng)端蓋多孔鉆專用機(jī)床的設(shè)計(jì)

27.基于普通機(jī)床的后托架及夾具的設(shè)計(jì)開發(fā)

28.減速器箱體鉆口面孔組合機(jī)床總體設(shè)計(jì)及主軸箱設(shè)計(jì) 29.經(jīng)濟(jì)型中擋精度數(shù)控機(jī)床橫向進(jìn)給設(shè)計(jì) 30.立式單面8軸數(shù)控組合鉆床主軸箱設(shè)計(jì) 31.兩軸實(shí)驗(yàn)型數(shù)控系統(tǒng)設(shè)計(jì) 32.普通機(jī)床改造成鍵槽銑床 33.普通鉆床改造為多軸鉆床 34.氣缸蓋螺釘孔加工專機(jī) 35.三坐標(biāo)數(shù)控磨床設(shè)計(jì) 36.三坐標(biāo)數(shù)控銑床設(shè)計(jì)

37.砂輪磨損的智能監(jiān)測的研究 38.數(shù)控車床橫向進(jìn)給機(jī)構(gòu)設(shè)計(jì) 39.數(shù)控車床橫向進(jìn)給機(jī)構(gòu)設(shè)計(jì)2 40.數(shù)控車床主傳動(dòng)機(jī)構(gòu)設(shè)計(jì)

41.數(shù)控車床縱向進(jìn)給及導(dǎo)軌潤滑機(jī)構(gòu)設(shè)計(jì) 42.數(shù)控機(jī)床主傳動(dòng)系統(tǒng)設(shè)計(jì)

43.絲杠車床改光杠鍵槽銑專機(jī)進(jìn)給系統(tǒng)設(shè)計(jì) 44.臺式車床車頭箱孔系加工分配箱機(jī)構(gòu)設(shè)計(jì) 45.臺式車床車頭箱孔系加工鏜模設(shè)計(jì) 46.拖拉機(jī)撥叉銑專機(jī)

47.組合機(jī)床主軸箱及夾具設(shè)計(jì) 48.鉆孔組合機(jī)床設(shè)計(jì)

49.T611鏜床主軸箱傳動(dòng)設(shè)計(jì)及尾柱設(shè)計(jì)

50.XA5032普通立式升降臺銑床經(jīng)濟(jì)型的數(shù)控改造 51.大模數(shù)蝸桿銑刀專用機(jī)床設(shè)計(jì) 52.大型軸齒輪專用機(jī)床設(shè)計(jì) 53.普通鉆床改造為多軸鉆床

54.拖拉機(jī)變速箱體上四個(gè)定位平面專用夾具及組合機(jī)床設(shè)計(jì) 55.機(jī)床C616型普通車床改造為經(jīng)濟(jì)型數(shù)控車床 56.機(jī)床XK5040數(shù)控立式銑床及控制系統(tǒng)設(shè)計(jì)

57.機(jī)床XKA5032A數(shù)控立式升降臺銑床自動(dòng)換刀裝置的設(shè)計(jì) 58.機(jī)床數(shù)控車削中心主軸箱及自驅(qū)動(dòng)刀架的設(shè)計(jì) 59.機(jī)床組合銑床的總體設(shè)計(jì)和主軸箱設(shè)計(jì) 60.C6150普通車床的數(shù)控技術(shù)改造 61.C6163普通車床的數(shù)控技術(shù)改造 62.深孔鉆鏜床設(shè)計(jì)輸出

63.數(shù)控車床CK6140主傳動(dòng)系統(tǒng)設(shè)計(jì)

64.4100QB柴油機(jī)箱體鉆孔三面立臥式組合機(jī)床后多軸箱設(shè)計(jì)(立式)65.車床改進(jìn)畢業(yè)設(shè)計(jì)

66.攻絲組合機(jī)床設(shè)計(jì)設(shè)計(jì)圖 67.靠模攻絲組合機(jī)床

68.FX2N在立式車床控制系統(tǒng)中的應(yīng)用(只論文)69.CA6140機(jī)床的數(shù)控改造設(shè)計(jì) 70.C620機(jī)床進(jìn)給系統(tǒng)的數(shù)控改造

71.C620設(shè)計(jì)

72.數(shù)控車床的進(jìn)給系統(tǒng)及刀架的設(shè)計(jì)

(五)其他機(jī)械類設(shè)計(jì):

1.制定CA6140車床法蘭盤的加工工藝,設(shè)計(jì)鉆4×φ9mm孔的鉆床夾具 2.氣門搖桿軸支座零件的機(jī)械加工工藝規(guī)程及專用夾具 3.后鋼板彈簧吊耳的加工工藝及夾具設(shè)計(jì)

4.制定撥叉零件的加工工藝,設(shè)計(jì)銑尺寸18H11槽的銑床夾具

5.制定CA6140車床撥叉的加工工藝,設(shè)計(jì)鉆φ5錐孔及2-M8孔的鉆床夾具 6.制定后鋼板彈簧吊耳的加工工藝,設(shè)計(jì)銑4mm工藝槽的銑床夾具

7.制定CA6140車床撥叉的加工工藝,設(shè)計(jì)車 55圓弧的車床和鉆 25孔的鉆床夾具

8.設(shè)計(jì)“CA6140車床撥叉”零件的機(jī)械加工工藝及工藝設(shè)備

9.制定CA6140C車床撥叉的加工工藝,設(shè)計(jì)銑8mm槽的銑床夾具 10.制定電機(jī)殼的加工工藝,設(shè)計(jì)鉆Φ8.5mm孔的鉆床夾具

11.制定機(jī)械密封裝備傳動(dòng)套的加工工藝,設(shè)計(jì)銑8mm凸臺的銑床夾具 12.CA6140車床后托架加工工藝及夾具設(shè)計(jì) 13.汽車連桿夾具

14.尾座體加工工藝及夾具設(shè)計(jì) 15.加工支承套零件的夾具設(shè)計(jì)

16.WHX112減速機(jī)殼加工工藝及夾具設(shè)計(jì) 17.CA6140車床對開螺母加工工藝

第四篇:機(jī)械專業(yè)論文中英文摘要

摘 要

本文主要論述了基于PLC的鋼管打捆機(jī)控制系統(tǒng)的設(shè)計(jì)思路和設(shè)計(jì)過程。主要包括鋼管打捆機(jī)的汽缸動(dòng)作的順序控制和打捆鋼帶的定長剪切伺服控制以及人機(jī)交互界面設(shè)計(jì)。論文介紹了鋼管打捆機(jī)的國內(nèi)外研究情況,說明了研制具有我國自主知識產(chǎn)權(quán)的鋼管打捆機(jī)的必要性,講述了國家對鋼管包裝的要求和對鋼管打捆機(jī)的性能要求;分析了給定結(jié)構(gòu)的鋼管打捆機(jī)的工作流程和控制要求;設(shè)計(jì)和選用了鋼管打捆機(jī)的氣動(dòng)系統(tǒng)和相應(yīng)的控制系統(tǒng)的硬件;建立了打捆鋼帶定長剪切伺服控制的數(shù)學(xué)模型;選用觸摸屏進(jìn)行了人機(jī)交互界面的設(shè)計(jì);對PLC控制系統(tǒng)的重點(diǎn)和難點(diǎn)程序進(jìn)行了詳細(xì)敘述。

本文所設(shè)計(jì)的鋼管打捆機(jī)控制系統(tǒng)具有根據(jù)設(shè)定參數(shù)自動(dòng)對鋼管計(jì)數(shù)、自動(dòng)剪切打捆鋼帶、自動(dòng)完成鋼管打捆的動(dòng)作控制等功能,同時(shí)通過觸摸屏實(shí)現(xiàn)參數(shù)的輸入和實(shí)時(shí)顯示。

關(guān)鍵詞:自動(dòng)鋼管打捆機(jī);定長剪切;變頻調(diào)速;人機(jī)界面

This article mainly discusses the design idea and the design process of the PLC based strapping machine controlling system.It includes the sequence control of the cylinder moves of the strapping machine, the fixed-length shear servo control of the steel packing, and the designs of the Man-machine interface.The thesis introduces the strapping machine’s studying condition both at home and abroad, illustrating the necessity of owning the strapping machine of the Independent intellectual property rights;analyzing the workflow and the control requirements of the given structure strapping machine;designing and choosing the hardware of the strapping machine’s pneumatic system and the corresponded controlling system;establishing the mathematical model of the fixed-length shear servo control;choosing the touch screen to do designs of the Man-machine interface;doing detailed descriptions to the important and difficult process of the PLC controlling system.The strapping machine’s controlling system designed by this thesis owns the functions of counting steels automatically according to the setting

parameters, shearing the packed steels automatically, and fulfilling the motion control of packing steels automatically, and at the same time, realizing the parameters input and the real-time display by the touch screen.Key words: automatic strapping machine;fixed-length shear;frequency control;man-machine interface

第五篇:論文致謝詞

歷時(shí)將近兩個(gè)月的時(shí)間終于將這篇論文寫完,在論文的寫作過程中遇到了無數(shù)的困難和障礙,都在同學(xué)和老師的幫助下度過了。尤其要強(qiáng)烈感謝我的論文指導(dǎo)老師—XX老師,她對我進(jìn)行了無私的指導(dǎo)和幫助,不厭其煩的幫助進(jìn)行論文的修改和改進(jìn)。另外,在校圖書館查找資料的時(shí)候,圖書館的老師也給我提供了很多方面的支持與幫助。在此向幫助和指導(dǎo)過我的各位老師表示最中心的感謝!

感謝這篇論文所涉及到的各位學(xué)者。本文引用了數(shù)位學(xué)者的研究文獻(xiàn),如果沒有各位學(xué)者的研究成果的幫助和啟發(fā),我將很難完成本篇論文的寫作。

感謝我的同學(xué)和朋友,在我寫論文的過程中給予我了很多你問素材,還在論文的撰寫和排版燈過程中提供熱情的幫助。

由于我的學(xué)術(shù)水平有限,所寫論文難免有不足之處,懇請各位老師和學(xué)友批評和指正!

本論文是在xx大學(xué)xx學(xué)院xx系xx老師的悉心指導(dǎo)下完成的。xx老師作為一名優(yōu)秀的、經(jīng)驗(yàn)豐富的教師,具有豐富的xx知識和xx經(jīng)驗(yàn),在整個(gè)論文實(shí)驗(yàn)和論文寫作過程中,對我進(jìn)行了耐心的指導(dǎo)和幫助,提出嚴(yán)格要求,引導(dǎo)我不斷開闊思路,為我答疑解惑,鼓勵(lì)我大膽創(chuàng)新,使我在這一段寶貴的時(shí)光中,既增長了知識、開闊了視野、鍛煉了心態(tài),又培養(yǎng)了良好的實(shí)驗(yàn)習(xí)慣和科研精神。在此,我向我的指導(dǎo)老師表示最誠摯的謝意!

在論文即將完成之際,我的心情久久無法平靜,從開始選題到順利論文完成,有不知多少多少可敬的師長、同學(xué)、朋友給了我無數(shù)的幫助。感謝xx大學(xué)xx學(xué)院xx系提供的實(shí)驗(yàn)器材和實(shí)驗(yàn)藥品,感謝xx系全體老師給予我豐富的專業(yè)知識和各個(gè)方面的關(guān)心和幫助,感謝小組長的認(rèn)真負(fù)責(zé),感謝合作組員的熱心協(xié)助。同時(shí)也要感謝xx系xx級xx班全體同學(xué),正是由于你們的幫助和支持,我才能一個(gè)一個(gè)克服困難、解明疑惑,直至本文順利完成,在這里請接受我誠摯的謝意!最后我還要感謝培養(yǎng)我長大含辛茹苦的父母,謝謝你們!

行文至此,我的這篇論文已接近尾聲;歲月如梭,我四年的大學(xué)時(shí)光也即將敲響結(jié)束的鐘聲。離別在即,站在人生的又一個(gè)轉(zhuǎn)折點(diǎn)上,心中難免思緒萬千,一種感恩之情油然而生。生我者父母。感謝生我養(yǎng)我,含辛茹苦的父母。是你們,為我的學(xué)習(xí)創(chuàng)造了條件;是你們,一如既往的站在我的身后默默的支持著我。沒有你們就不會有我的今天。謝謝你們,我的父親母親!

在這四年中,老師的諄諄教導(dǎo)、同學(xué)的互幫互助使我在專業(yè)技術(shù)和為人處事方面都得到了很大的提高。感謝湖南商學(xué)院在我四年的大學(xué)生活當(dāng)中對我的教育與培養(yǎng),感謝湖南商學(xué)院信息學(xué)院的所有專業(yè)老師,沒有你們的辛勤勞動(dòng),就沒有我們今日的滿載而歸,感謝大學(xué)四年曾經(jīng)幫助過我的所有同學(xué)。在制作畢業(yè)設(shè)計(jì)過程中我曾經(jīng)向老師們和同學(xué)們請教過不少的問題,老師們的熱情解答和同學(xué)們的熱心幫助才使我的畢業(yè)設(shè)計(jì)能較為順利的完成。在此我向你們表示最衷心的感謝。

在論文完成之際,我首先向關(guān)心幫助和指導(dǎo)我的指導(dǎo)老師***表示衷心的感謝并致以崇高的敬意!

在學(xué)校的學(xué)習(xí)生活即將結(jié)束,回顧四年來的學(xué)習(xí)經(jīng)歷,面對現(xiàn)在的收獲,我感到無限欣慰。為此,我向熱心幫助過我的所有老師和同學(xué)表示由衷的感謝!在論文工作中,遇到了許許多多這樣那樣的問題,有的是專業(yè)上的問題,有的是論文格式上的問題,一直得到 ***老師的親切關(guān)懷和悉心指導(dǎo),使我的論文可以又快又好的完成,***老師以其淵博的學(xué)識、嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度、求實(shí)的工作作風(fēng)和他敏捷的思維給我留下了深刻的印象,我將終生難忘我的***老師對我的親切關(guān)懷和悉心指導(dǎo),再一次向他表示衷心的感謝,感謝他為學(xué)生營造的濃郁學(xué)術(shù)氛圍,以及學(xué)習(xí)、生活上的無私幫助!值此論文完成之際,謹(jǐn)向***老師致以最崇高的謝意!最后,衷心地感謝在百忙之中評閱論文和參加答辯的各位專家、教授!本論文是在導(dǎo)師***教授和***研究院的細(xì)細(xì)指導(dǎo)下完成的。導(dǎo)師淵博的專業(yè)知識,嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度,精益求精的工作作風(fēng),誨人不倦的高尚師德,嚴(yán)以律己、寬以待人的崇高風(fēng)范,樸實(shí)無華、平易近人的人格魅力對我影響深遠(yuǎn)。不禁使我樹立了遠(yuǎn)大的學(xué)術(shù)目標(biāo)、掌握了基本的研究方法,還使我明白了許多待人接物與為人處事的道理。本論文從選題到完成,每一步都是在導(dǎo)師的指導(dǎo)新完成的,傾注了導(dǎo)師大量的心血。在此謹(jǐn)向?qū)煴硎境绺叩木匆夂椭袊碌母兄x!本輪為的順利完成,離不開各位老師、同學(xué)和朋友的關(guān)心和幫助。在此感謝***、***、***老師的指導(dǎo)和幫助;感謝重點(diǎn)實(shí)驗(yàn)室的....鄧?yán)蠋煹闹笇?dǎo)和幫助;感謝**大學(xué)的***教授、***教授、***的關(guān)心、支持和幫助,在此表示深深的感謝,沒有他們的幫助和支持是沒有辦法完成我的博士學(xué)位論文的,同窗之間的友誼永遠(yuǎn)長存。

下載機(jī)械專業(yè)論文謝詞word格式文檔
下載機(jī)械專業(yè)論文謝詞.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    論文致謝詞

    致謝詞范文: (一) 本論文在xxx導(dǎo)師的悉心指導(dǎo)下完成的。導(dǎo)師淵博的專業(yè)知識、嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度,精益求精的工作作風(fēng),誨人不倦的高尚師德,嚴(yán)于律己、寬以待人的崇高風(fēng)范,樸實(shí)無法、......

    論文致謝詞

    寫論文很難,格式字體字?jǐn)?shù)都有要求,老師還要幫我們審核,寫不好的地方教我們修改,老師很辛苦的,所以我們要感謝他們,感謝他們幫助我們完成論文。 凌晨四點(diǎn),北京的初夏,天還沒有要亮......

    論文致謝詞

    致謝 在我的論文完成之際,回首學(xué)習(xí)期間的點(diǎn)點(diǎn)滴滴,有太多的感慨、充實(shí)和快樂。至此,對我的老師和所有幫助過我的人致以真摯的謝意。首先,衷心地感謝我的指導(dǎo)老師某某老師,感謝他......

    論文致謝詞

    論文完成,三年的研究生生活即將結(jié)束,感慨萬千! 首先,感謝我的導(dǎo)師張力教授。三年來,我時(shí)刻體會著張教授嚴(yán)肅的科學(xué)態(tài)度,嚴(yán)謹(jǐn)?shù)闹螌W(xué)精神,精益求精的工作作風(fēng),我想這是夠我一生受用的......

    論文致謝詞

    當(dāng)論文的寫作接近尾聲時(shí),連日陰霾的長沙總算迎來了姍姍來遲的暖春??创巴?,陽光大片鋪撒,觀云池波光粼粼,香樟樹郁郁蔥蔥,山腳下的校園氤氳在迷蒙的光澤中。知識的殿堂里,一切都顯......

    論文致謝詞

    論文致謝詞是在論文通過后對指導(dǎo)老師的感謝,論文從初稿到定稿都需要指導(dǎo)老師的指導(dǎo)。老師也很辛苦,我們應(yīng)該好好謝謝他們。 感謝我的導(dǎo)師XXX 教授,他們嚴(yán)謹(jǐn)細(xì)致、一絲不茍的......

    論文致謝詞

    致謝 炎炎夏日如期而至,在這個(gè)火一般熱情的季節(jié)里,三年的研究生學(xué)習(xí)也將畫上一個(gè)句號,或許也意味著我學(xué)生生涯的結(jié)束。戰(zhàn)國末期著名思想家荀子曾說過:“學(xué)無止境?!倍潭痰乃膫€(gè)......

    論文致謝詞

    首先我要感謝我的兩位導(dǎo)師周晶教授和慕洪生副總工程師。周老師嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度、淵博的理論知識、深厚的學(xué)術(shù)造詣以及平易近人的作風(fēng)讓我心懷感恩,是我工作和學(xué)習(xí)的榜樣!同時(shí)......

主站蜘蛛池模板: 人人妻人人澡人人爽不卡视频| 国产女主播喷水视频在线观看| 精品久久久久久综合日本| 一区三区在线专区在线| 国产在线精品一区二区不卡麻豆| 国产成人啪精品午夜网站| 久久电影网午夜鲁丝片免费| 日韩av中文无码影院| 亚洲熟妇无码一区二区三区导航| 免费看国产成年无码av| 国产精品视频白浆免费视频| 久久精品av国产一区二区| 免费大片黄在线观看| 久久w5ww成w人免费| 日韩精品东京热无码视频| 久久精品日日躁夜夜躁欧美| 免费国产又色又爽又黄的网站| 亚洲一本大道无码av天堂| 亚洲天天做日日做天天谢日日欢| 少妇激情作爱视频| 500av导航大全精品| 中文无码制服丝袜人妻av| 亚洲精品少妇高清30p| 免费精品国产人妻国语| 六月丁香亚洲综合在线视频| 免费看黄色片| 十八禁无码免费网站| 国产精品永久免费嫩草研究院| 亚洲精品无码永久电影在线| 乱人伦人妻精品一区二区| 亚洲中文有码字幕日本第一页| 国产乱妇乱子在线播视频播放网站| 亚洲色成人网站永久| 欧洲熟妇色xxxx欧美老妇老头多毛| 欲香欲色天天综合和网| 国产精品爽爽久久久久久| 欧洲人妻丰满av无码久久不卡| 俄罗斯兽交黑人又大又粗水汪汪| 国产办公室秘书无码精品99| 午夜精品久久久久久久99热| 亚洲国产成人精品青青草原|