久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

基于DSP的大功率開關電源的設計方案

時間:2019-05-14 04:33:56下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《基于DSP的大功率開關電源的設計方案》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《基于DSP的大功率開關電源的設計方案》。

第一篇:基于DSP的大功率開關電源的設計方案

富士變頻器FRN15P11S-4CX 二手變頻器

0 引 言

信息時代離不開電子設備,隨著電子技術的高速發展,電子設備的種類與日俱增,與人們的工作、生活的關系也日益密切。任何電子設備又都離不開可靠的供電電源,它們對電源供電質量的要求也越來越高。

目前,開關電源以具有小型、輕量和高效的特點而被廣泛應用于電子設備中,是當今電子信息產業飛速發展不可缺少的一種電源。與之相應,在微電子技術發展的帶動下,DSP芯片的發展日新月異,因此基于DSP芯片的開關電源擁有著廣闊的前景,也是開關電源今后的發展趨勢。

電源的總體方案

本文所設計的開關電源的基本組成原理框圖如圖1所示,主要由功率主電路、DSP控制回路以及其它輔助電路組成。

開關電源的主要優點在“高頻”上。通常濾波電感、電容和變壓器在電源裝置的體積和重量中占很大比例。從“電路”和“電機學”的有關知識可知,提高開關頻率可以減小濾波器的參數,并使變壓器小型化,從而有效地降低電源裝置的體積和重量。以帶有鐵芯的變壓器為例,分析如下:

圖1 系統組成框圖

設鐵芯中的磁通按正弦規律變化,即φ= φMsinωt,則:

式中,EM= ωWφ M=2πfWφM,在正弦情況下,EM=√2E,φM=BMS,故:

東營二手變頻器http://www.tmdps.cnT、比較控制寄存器COMCONA/B、死區控制寄存器DBTCONA/B。

PWM波的生成需對TMS320LF2407A的事件管理模塊中的寄存器進行配置。由于選用的是PWM1/2,因此配置事件管理寄存器組A,根據需要生成帶死區PWM波的設置步驟為:

(1)設置并裝載比較方式寄存器ACTRA,即設置PWM波的輸出方式;

(2)設置T1CON寄存器,設定定時器1工作模式,使能比較操作;

(3)設置并裝載定時器1周期寄存器T1PR,即規定PWM 波形的周期;

(4)定義CMPR1寄存器,它決定了輸出PWM 波的占空比,CMPR1中的值是通過計算采樣值而得到的;

(5)設置比較控制寄存器COMCONA,使能PD—PINTA 中斷;

(6)設置并裝載死區寄存器DBTCONA,即設置死區時間。

圖10所示為帶死區PWM波的生成原理

3.5 鍵盤掃描及LCD顯示模塊

按鍵掃描執行模塊的作用是判斷用戶的輸入,對不同的輸入做出相應的響應。本開關電源設計采用16個壓電式按鍵組成的矩陣式鍵盤構成系統的輸入界面。16個按鍵的矩陣式鍵盤需要DSP的8個I/O口,這里選用IOPA0~IOPA3作為行線,IOPF0~IOPF3作為列線。由于TMS320LF2407A都是復用的I/O口,因此需要對MCRA和MCRC寄存器進行設置使上述8個I/O口作為一般I/O端口使用。按鍵掃描執行模塊采用的東營二手變頻器http://www.tmdps.cn/weixiuanli/ http://www.tmdps.cn/bianpinqichangshi/

富士變頻器FRN15P11S-4CX 二手變頻器

是中斷掃描的方式,只有在鍵盤有鍵按下時才會通過外部引腳產生中斷申請,DSP相應中斷,進人中斷服務程序進行鍵盤掃描并作相應的處理。

LCD顯示模塊需要DSP提供11個I/O口進行控制,包括8位數據線和3位控制線,數據線選用IOPB0~IOPB7,控制線選用IOPFO IOPF2,通過對PBDATDIR和PFDATDIR寄存器的設置實現DSP與LCD的數據傳輸,實時顯示開關電源的運行狀態。

樣機研制

主要技術指標如下:輸入電壓:三相AC380 V±5%;輸出電壓:DC220V±2%;輸出電流:50 A;額定功率:11 kW。

所得試驗樣機額定負載時的輸出波形如圖11(a)所示。由圖11(a)實際讀數可知,輸出電壓從0上升到220 V的響應時間為1s左右,電源系統具有較快的響應速度。同時,由圖11(b)中的電壓波形局部放大圖可見,輸出電壓為220 V時,電壓波動在2 V左右,其最大電壓波動小于1%。

東營二手變頻器http://www.tmdps.cn/weixiuanli/ http://www.tmdps.cn/bianpinqichangshi/

富士變頻器FRN15P11S-4CX 二手變頻器

圖11 樣機額定負載時的輸出波形

結論

本文介紹的基于DSP的大功率高頻開關電源,充分發揮了DSP強大功能,可以對開關電源進行多方面控制,并且能夠簡化器件,降低成本,減少功耗,提高設備的可靠性。試驗數據表明指標滿足設計要求,本電源均能夠保持良好的輸出性能。

東營二手變頻器http://www.tmdps.cn/weixiuanli/ http://www.tmdps.cn/bianpinqichangshi/

第二篇:基于DSP開關電源

基于DSP的開關電源

摘要

本文以TMs320LF2407A為控制核心,介紹了一種基于DSP的大功率開關電源的設計方案。該電源采用半橋式逆變電路拓撲結構,應用脈寬調制和軟件PID調節技術實現了電壓的穩定輸出。最后,給出了試驗結果。試驗表明,該電源具有良好的性能,完全滿足技術規定要求。關鍵字:DSP;開關電源;PID調節

ABSTRACT In this paper,setting TMs320LF2407A as the control center, it describes a DSP-based high-power switching power source design.The power supply uses a half-bridge inverter circuit topology, applications and software PID regulator pulse width modulation technology to achieve a stable output voltage.Finally, the experimental results was given.The experimental results show that the power supply has a good performance, fully meeting the technical requirements.Key Words: DSP;Switching power supply;PID

0 引 言

信息時代離不開電子設備,隨著電子技術的高速發展,電子設備的種類與日俱增,與人們的工作、生活的關系也日益密切。任何電子設備又都離不開可靠的供電電源,它們對電源供電質量的要求也越來越高。

目前,開關電源以具有小型、輕量和高效的特點而被廣泛應用于電子設備中,是當今電子信息產業飛速發展不可缺少的一種電源。與之相應,在微電子技術發展的帶動下,DSP芯片的發展日新月異,因此基于DSP芯片的開關電源擁有著廣闊的前景,也是開關電源今后的發展趨勢。電源的總體方案設計

本文所設計的開關電源的基本組成原理框圖如圖1所示,主要由功率主電路、DSP控制回路以及其它輔助電路組成。

開關電源的主要優點在“高頻”上。通常濾波電感、電容和變壓器在電源裝置的體積和重量中占很大比例。從“電路”和“電機學”的有關知識可知,提高開關頻率可以減小濾波器的參數,并使變壓器小型化,從而有效地降低電源裝置的體積和重量。以帶有鐵芯的變壓器為例,分析如下:

圖1.開關電源基本原理

設鐵芯中的磁通按正弦規律變化,即φ= φMsinωt,則:

eL??Wd????Wcos?t?EMcos?t dt(1)式中,EM= ωWφ M=2πfWφM,在正弦情況下,EM=√2E,φM=BMS,故:

E?2?fW?M?4.44fWBMS 2(2)式中,f為鐵芯電路的電源頻率;W 為鐵芯電路線圈匝數;BM為鐵芯的磁感應強度;S為鐵芯線圈截面積。

從公式可以看出電源頻率越高,鐵芯截面積可以設計得越小,如果能把頻率從50 Hz提高到50 kHz,即提高了一千倍,則變壓器所需截面積可以縮小一千倍,這樣可以大大減小電源的體積。

綜合電源的體積、開關損耗以及系統抗干擾能力等多方面因素的考慮,本開關電源的開關頻率設定為30 kHZ。系統的硬件設計 2.1 功率主電路

本電源功率主回路采用“AC-DC-AC—DC”變換的結構,主要由輸入電網EMI濾波器、輸人整流濾波電路、高頻逆變電路、高頻變壓器、輸出整流濾波電路等幾部分組成,如圖2所示。

圖2.功率主電路原理圖

圖3.功軍主回路的電壓波形變化

本開關電源采用半橋式功率逆變電路。如圖2所示,輸入市電經EMI濾波器濾波,大大減少了交流電源輸入的電磁干擾,并同時防止開關電源產生的諧波串擾到輸入電源端。再經過橋式整流電路、濾波電路變成直流電壓加在P、N兩點問。P、N之間接人一個小容量、高耐壓的無感電容,起到高頻濾波的作用。半橋式功率變換電路與全橋式功率變換電路類似,只是其中兩個功率開關器件改由兩個容量相等的電容CA1和CA2代替。在實際應用中為了提高電容的容量以及耐壓程度,CA1和CA2往往采用的是由多個等值電容并聯組成的電容組。C A1、CA2 的容量選值應在電源體積和重量允許的條件下盡可能的大,以減小輸出電壓的紋波系數和低頻振蕩。CA1 和CA2 在這里同時起到了靜態時分壓的作用,使Ua =Uin/2。

在本電源的設計中,采用IGBT來作為功率開關器件。它既具有MOSFET的通斷速度快、輸入阻抗高、驅動電路簡單及驅動功率小等優點,又具有GTR的容量大和阻斷電壓高的優點。

在IGBT的集射極間并接RC吸收網絡,降低開關應力,減小IGBT關斷產生的尖峰電壓;并聯二極管DQ實現續流的作用。二次整流采用全波整流電路,通過后續的LC濾波電路,消除高頻紋波,減小輸出直流電壓的低頻振蕩。LC濾波電路中的電容由多個高耐壓、大容量的電容并聯組成,以提高電源的可靠性,使輸出直流電壓更加平穩。2.2 控制電路

控制電路部分實際上是一個實時檢測和控制系統,包括對開關電源輸出端電壓、電流和IGBT溫度的檢測,對收集信息的分析和運算處理,對電源工作參數的設置和顯示等。其控制過程主要是通過采集開關電源的相關參數,送入DSP芯片進行預定的分析和計算,得出相應的控制數據,通過改變輸出PWM波的占空比,送到逆變橋開關器件的控制端,從而控制輸出電壓和電流。

控制電路主要包括DSP控制器最小系統、驅動電路、輔助電源電路、采樣電路和保護電路。

(1)DSP控制器最小系統

DSP控制器是其中控制電路的核心采用TMS32OLF2407A DSP芯片,它是美國TEXAS INSTU—MENTS(TI)公司的最新成員。TMS30LF2407A基于C2xLP內核,和以前C2xx系列成員相比,該芯片具有處理性能更好(30MIPS)、外設集成度更高、程序存儲器更大、A/D轉換速度更快等特點,是電機數字化控制的升級產品,特別適用于電機以及逆變器的控制。DSP控制器最小系統包括時鐘電路、復位電路以及鍵盤顯示電路。時鐘電路通過15 MHz的外接晶振提供;復位電路直接通過開關按鍵復位;由4×4的矩陣式鍵盤和SPRT12864M LCD構成了電源系統的人機交換界面。

(2)驅動放大電路

IGBT的驅動電路采用脈沖變壓器和TC4422組成,其電路原理圖如圖4所示:

圖4.IGBT驅動電路原理圖

由于TMS320LF2407A的驅動功率較小,不能勝任驅動開關管穩定工作的要求,因此需要加上驅動放大電路,以增大驅動電流功率,提高電源系統的可靠性。如圖4所示,采用兩片TCA422組成驅動放大電路。

TC4421/4422是Microchip公司生產的9A高速MOsFET/IGBT驅動器,其中TC4421是反向輸出,TC4422是同向輸出,輸出級均為圖騰柱結構。

TC4421/4422具有以下特點:

①輸出峰值電流大:9 A;

② 電源范圍寬:4.5 V~18 V;

③連續輸出電流大:最大2 A;

④快速的上升時間和下降時間:30 ns(負載4700pF),180 ns(負載47000 pF);

⑤傳輸延遲時間短:30 ns(典型);

⑥供電電流小:邏輯“1”輸入~200μA(典型),邏輯“0”輸入~55 μA(典型);

⑦輸出阻抗低:1.4 Ω(典型);

⑧閉鎖保護:可承受1.5 A的輸出反向電流;

⑨輸入端可承受高達5 V的反向電壓;

⑩能夠由TTL或CMOS電平(3 V~18 V)直接驅動,并且輸人端采用有300 mV滯回的施密特觸發電路。

當TMS320LF2407A輸出的PWM1為高電平,PWM2為低電平時,經過TCA422驅動放大后輸出,在脈沖變壓器一次側所流過的電流從PWMA流向PWMB,如圖4中箭頭所示,電壓方向為上正下負。

根據變壓器的同名端和接線方式,則開關管Q1的柵極電壓為正,Q2的柵極電壓為負。因此,此時是驅動QM1導通。反之若是PWM1為高電平,PWM2為低電平時,則是驅動Q2導通。四只二極管DQ1 ~DQ2的作用是消除反電動勢對TCA422的影響。

(3)輔助電源電路

本開關電源電路設計過程中所需要的幾路工作電源如下:

① TMS320LF2407 DSP所需電源:I/O 電源(3.3 V),PLL(PHSAELOCKED LOOP)電源(3.3 V),FIASH編程電壓(5 V),模擬電路電源電壓(3.3 V);②TCA422芯片所需電源:電源端電壓范圍4.5~18 V(選擇15 V);③采樣電路中所用運算放大器的工作電源為15 V。

因此,整個控制電路需要提供15 V、5 V和3.3 V三種制式的電壓。設計中選用深圳安時捷公司的HAw 5-220524 AC/DC模塊將220 V、50 Hz的交流電轉換成24 V直流電,然后采用三端穩壓器7815和7805獲得15 V和5 V的電壓。TMS320LF2407A所需的3.3 V由5 V通過TPS7333QD電壓芯片得到。(4)采樣電路

電壓采樣電路由三端穩壓器TL431和光電耦合器PC817之問的配合來構成。電路設計如圖5所示,TL431與PC817一次側的LED串聯,TL431陰極流過的電流就是LED的電流。輸出電壓Ud經分壓網絡后到參考電壓UR與TL431中的2.5 V基準電壓Uref進行比較,在陰極上形成誤差電壓,使LED的工作電流 If發生變化,再通過光耦將變化的電流信號轉換為電壓信號送人LF2407A的ADCIN00引腳。

圖5.電壓采樣電路原理圖

由于TMS320LF2407A的工作電壓為3.3 V,因此輸入DSP的模擬信號也不能超過3.3 V。為防止輸入信號電壓過高造成A/D輸入通道的硬件損壞,我們對每一路A/D通道設計了保護電路,如圖5所示,Cu2,CU3 起濾波作用,可以將系統不需要的高頻和低頻噪聲濾除掉,提高系統信號處理的精度和穩定性。

另外,采用穩壓管限制輸入電壓幅值,同時輸入電壓通過二極管與3.3 V電源相連,以吸收瞬間的電壓尖峰。

當電壓超過3.3 V時,二極管導通,電壓尖峰的能量被與電源并聯的眾多濾波電容和去耦電容吸收。并聯電阻Ru4的目的是給TL431提供偏置電流,保證TL431至少有1 mA的電流流過。Cu1 和RU3作為反饋網絡的補償元件,用以優化系統的頻率特性。

電流采樣的原理與電壓采樣類似,只是在電路中要通過電流傳感器將電流信號轉換為電壓信號,然后再進行采集。

(5)保護電路

為保證系統中功率轉換電路及逆變電路能安全可靠工作,TMs320LF2407A提供了PDPINTA,各種故障信號經或門CD4075B綜合后,經光電隔離、反相及電平轉換后輸入到PDPINTA引腳,有任何故障時,CD4075B輸出高電平,PDPINTA引腳相應被拉為低電平,此時DSP所有PWM輸出管腳全部呈現高阻狀態,即封鎖PWM輸出。整個過程不需要程序干預,由硬件實現。這對實現各種故障信號的快速處理非常有用。在故障發生后,只有在人為干預消除故障,重啟系統后才能繼續工作。系統的軟件實現

為了構建DSP控制器軟件框架,使程序易于編寫、查錯、測試、維護、修改、更新和擴充,在軟件設計中采用了模塊化設計,將整個軟件劃分為初始化模塊、ADC信號采集模塊、PID運算處理模塊、PWM波生成模塊、液晶顯示模塊以及按鍵掃描模塊。各模塊間的流程如圖6所示。

圖6.功能模塊流程圖

3.1 初始化模塊

系統初始化子程序是系統上電后首先執行的一段代碼,其功能是保證主程序能夠按照預定的方式正確執行。系統的初始化包括所有DSP的基本輸入輸出單元的初始設置、LCD初始化和外擴單元的檢測等。

3.2 ADC采樣模塊

TMS320LF2407A芯片內部集成了10位精度的帶內置采樣/保持的模數轉換模塊(ADC)。根據系統的技術要求,10位ADC的精度可以滿足電壓的分辨率、電流的分辨率的控制要求,因此本設計直接利用DSP芯片內部集成的ADC就可滿足控制精度。另外,該10位ADC是高速ADC,最小轉換時間可達到500 ns,也滿足控制對采樣周期要求。

ADC采樣模塊首先對ADC進行初始化,確定ADC通道的級聯方式,采樣時間窗口預定標,轉換時鐘預定標等。然后啟動ADC采樣,定義三個數組依次存放電壓、電流和溫度的采樣結果,對每一個信號采樣8次,經過移位還原后存儲到相應的數組中,共得到3組數據。如果預定的ADC中斷發生,則轉人中斷服務程序,對采樣的數據進行分析、處理和傳輸。以電壓采樣為例,其具體的流程圖如圖7所示。

圖7.程序流程圖

3.3 PID運算模塊

本系統借助DSP強大的運算功能,通過編程實現了軟件PID調節。由于本系統軟件中采用的是增量式PID算法,因此需要得到控制量的增量△un,式(3)為增量式PID算法的離散化形式:

?un?Kp(en?en?1)?Kien?Kd[en?2en?1?en?2]

(3)

開關電源在進入穩態后,偏差是很小的。如果偏差e在一個很小的范圍內波動,控制器對這樣微小的偏差計算后,將會輸出一個微小的控制量,使輸出的控制值在一個很小的范圍內,不斷改變自己的方向,頻繁動作,發生振蕩,這既影響輸出控制器,也對負載不利。

為了避免控制動作過于頻繁,消除由于頻繁動作所引起的系統振蕩,在PID算法的設計中設定了一個輸出允許帶eo。當采集到的偏差|en|≤eo時,不改變控制量,使充電過程能夠穩定地進行;只有當|en| >eo 時才對輸出控制量進行調節。PID控制模塊的程序流程如圖8所示:

圖8.PID運算程序流程圖

TMS320LF2407A內部包括兩個事件管理器模塊EVA和EVB,每個事件管理器模塊包括通用定時器GP、比較單元、捕獲單元以及正交編碼脈沖電路。通過TMS320LF2407A事件管理模塊中的比較單元可以產生帶死區的PWM波,與PWM 波產生相關的寄存器有:比較寄存器CMPRx、定時器周期寄存器Tx—PR、定時器控制寄存器TxCON、定時器增/減計數器TxCNT、比較控制寄存器COMCONA/B、死區控制寄存器DBTCONA/B。

PWM波的生成需對TMS320LF2407A的事件管理模塊中的寄存器進行配置。由于選用的是PWM1/2,因此配置事件管理寄存器組A,根據需要生成帶死區PWM波的設置步驟為:

(1)設置并裝載比較方式寄存器ACTRA,即設置PWM波的輸出方式;

(2)設置T1CON寄存器,設定定時器1工作模式,使能比較操作;

(3)設置并裝載定時器1周期寄存器T1PR,即規定PWM 波形的周期;

(4)定義CMPR1寄存器,它決定了輸出PWM 波的占空比,CMPR1中的值是通過計算采樣值而得到的;

(5)設置比較控制寄存器COMCONA,使能PD—PINTA 中斷;

(6)設置并裝載死區寄存器DBTCONA,即設置死區時間。

圖9.帶死區PWM波的生成原理

3.5 鍵盤掃描及LCD顯示模塊

按鍵掃描執行模塊的作用是判斷用戶的輸入,對不同的輸入做出相應的響應。本開關電源設計采用16個壓電式按鍵組成的矩陣式鍵盤構成系統的輸入界面。16個按鍵的矩陣式鍵盤需要DSP的8個I/O口,這里選用IOPA0~IOPA3作為行線,IOPF0~IOPF3作為列線。由于TMS320LF2407A都是復用的I/O口,因此需要對MCRA和MCRC寄存器進行設置使上述8個I/O口作為一般I/O端口使用。按鍵掃描執行模塊采用的是中斷掃描的方式,只有在鍵盤有鍵按下時才會通過外部引腳產生中斷申請,DSP相應中斷,進人中斷服務程序進行鍵盤掃描并作相應的處理。

LCD顯示模塊需要DSP提供11個I/O口進行控制,包括8位數據線和3位控制線,數據線選用IOPB0~IOPB7,控制線選用IOPFO IOPF2,通過對PBDATDIR和PFDATDIR寄存器的設置實現DSP與LCD的數據傳輸,實時顯示開關電源的運行狀態。結論

本文介紹的基于DSP的大功率高頻開關電源,充分發揮了DSP強大功能,可以對開關電源進行多方面控制,并且能夠簡化器件,降低成本,減少功耗,提高設備的可靠性。

參考文獻

[1]何希才.新型開關電源的設計與應用[J].北京:科學出版社,2001 [2]劉和平,嚴利平,張學鋒等.TMS320LF240xDSP結構、原理及應用[J].北京:航空航天大學出版社,2002 [3] 陳偉,馬金平,杜志江,李永利.基于DSP的PWM型開關電源的設計[J].微計算機信息,2006,12(5):238-240 [4]周志敏,周紀海.開關電源實用技術——設計與應用[J].北京:人民郵電出版社,2003 [5] 毛曉波.交流采樣技術及其DSP實現方法.微計算機信息[J].2005,11(5):36-39

第三篇:開題報告-大功率開關電源的設計

開題報告

電氣工程及自動化

大功率開關電源的設計

一、綜述本課題國內外研究動態,說明選題的依據和意義

開關電源的前身是線性穩壓電源。在開關電源出現之前,各種電子裝置、電氣控制設備的工作電源都采用線性穩壓電源。隨著電子技術的迅猛發展,集成度的不斷增加,計算機等各種電子設備體積越來越小而功能卻越來越強大,因此,迫切需要重量輕、體積小、效率高的新型電源,這就為開關電源技術的發展提供了強大的動力。

可以說,開關電源技術的發展是隨著電力電子器件的發展而發展的。新型電力電子器件的發展為開關電源的發展提供了物質條件。20世紀60年代末,耐高壓、大電流的雙極型電力晶體管(亦稱巨型晶體管,BJT、GTR)的問世使得采用高工作頻率的開關電源的出現稱為可能。

早期的開關電源開關頻率僅為幾千赫茲,隨著磁性材料及大功率硅晶體管的耐壓提高,二極管反向恢復時間的縮短,開關電源工作頻率逐步提高。到了1969年,終于做成了25千赫茲的開關電源。由于它突破了人耳聽覺極限的20千赫茲,這一變化甚至被稱為“20千赫茲革命”。

在20世紀80年代以前,開關電源作為線性穩壓電源的更新換代產品,主要應用于小功率場合。而中大功率直流電源則以晶閘管相控整流電源為主。但是,這一格局從20世紀80年代起,由于絕緣柵極雙極型晶體管(簡稱IGBT)的出現而被打破。IGBT屬于電壓驅動型器件,與GTR相比前者易于驅動,工作頻率更高,有突出的優點而沒有明顯的缺點。因而,IGBT迅速取代了GTR,成為中等功率范圍的主流器件,并且不斷向大功率方向拓展。

開關電源開關頻率的提高可以使電源重量減輕、體積減小,但使開關損耗增大,電源效率降低,電磁干擾問題變得突出起來。為了解決因提高開關電源工作頻率而帶來的負面影響,同樣在20世紀80年代,出現了軟開關技術。軟開關技術采用準諧振技術的零電壓開關(ZVS)電路和零電流開關(ZCS)電路。在理想情況下,采用軟開關技術,可使開關損耗降為零。正是軟開關技術的應用,使開關電源進一步向效率高、重量輕、體積小、功率密度大的方向發展。經過近30年的發展,對軟開關技術的研究可謂方興未艾,它已成為各種電力電子電路的一項基礎性技術。迄今為止,軟開關技術應用最為成功的領域非開關電源莫屬。

最近幾年,“綠色電源”這一名詞開始進入人們的視野。所謂“綠色”是指,對環境不產生噪聲、不產生電磁干擾,對電網不產生諧波污染。為了提高開關電源的功率因數,降低開關電源對電網的諧波污染,在20世紀90年代,出現了功率因數校正(Power

Factor

Correction——PFC)技術。目前,單相PFC技術已比較成熟,相關的控制芯片已在各種開關電源中廣泛應用,相比之下三相PFC技術則還處在起步階段。

高頻化是開關電源輕、薄、小的關鍵技術,國外各大開關電源制造商都在功率鐵氧體材料上加大科技創新,并致力于開發新型高智能化的元器件,尤其是改善整流器件的損耗,以提高在高頻率和較大磁通密度下獲得高的磁性能。另外,電容器的小型化和表面粘著(SMT)技術的應用為開關電源向輕、薄、小型化發展奠定了良好的技術支持。目前市場上出售的采用雙極性晶體管制成的100千赫茲開關電源和用場效應管制成的500千赫茲開關電源雖已使用化,但其工作頻率還有待進一步的提高。

模塊化是開關電源發展的總體趨勢,可以采用模塊化電源組成分布式電源系統,實現并聯方式的容量擴展。

選擇本課題可以使我掌握開關電源的工作原理,進一步加深對開關電源的理解。并把所學的專業知識(包括單片機原理與應用技術、電力電子技術、大學物理、計算機輔助設計等)應用到具體實例中,有效地鞏固所學的基礎理論知識,真正做到學有所用。

二、研究的基本內容,擬解決的主要問題:

1、研究的基本內容包括:開關電源的工作原理,大功率開關電源中普遍采用的全橋型電路及其驅動電路以及高頻變壓器的設計與制作等。

2、計劃將此系統分成四部分——功率因數校正(PFC)電路、輔助電源模塊、主電路以及控制電路。

3、功率因數校正電路用來提高整流電路的功率因數,防止大量的諧波分量涌入電網,造成對電網的諧波污染,干擾其它用電設備的正常運行。

4、輔助電源模塊用來為控制電路提供電能。擬用單片集成開關電源芯片(TOP204)來實現。

5、控制電路用場效應管集成驅動芯片IR2155,驅動全橋電路。

6、主電路的設計主要包括高頻變壓器的設計和全橋型電路中功率管的選型。

三、研究步驟、方法及措施:

步驟:

(1)查閱相關的技術資料,制定初步的方案;

(2)利用適當的計算機輔助設計軟件(如Proteus、PI

Expert

6.5、Multism等)對設計方案進行模擬仿真;

(3)四個模塊設計的先后順序為功率因數校正電路、輔助電源模塊、控制電路和主電路。

方法:化繁為簡,將整個系統分解成四個部分,方便設計、調試。對局部電路預先進行仿真,對結果有所預期。

措施:查閱于畢業設計有關資料和文獻(圖書館、超星電子圖書閱覽室等)。經常與指導老師取得聯系,一起探討有關電路的設計方案等問題。

四、參考文獻

[1]

康華光.電子技術基礎.模擬部分(第五版)[M].北京:高等教育出版社,2005.[2]

周志敏,周紀海,紀愛華.高頻開關電源設計與應用實例[M].北京:人民郵電出版社,2004.[3]

張占松,蔡宣三.開關電源的原理與設計[M].北京:電子工業出版社,2000.[4]

蔣玉萍,倪海東.高頻開關電源與應用[M].北京:機械工業出版社,2004.[5]

翟亮,凌民.基于MATLAB有控制系統計算機仿真[M].北京:清華大學出版社,2006.[6]

王慶.Protel

SE及DXP電路設計教程[M].北京:電子工業出版社,2006.[7]

劉國權,韓曉東.Protel

DXP

電路原理圖設計指南[M].北京:中國鐵道出版社,2003.[8]

周仲編。國產集成電路應用500例[M].北京:電子工業出版社,1992.

第四篇:大功率開關電源中功率MOSFET的驅動技術

大功率開關電源中功率MOSFET的驅動技術 [出處/作者]:Microchip Technology公司

功率MOSFET具有導通電阻低、負載電流大的優點,因而非常適合用作開關電源(switch-mode power supplies,SMPS)的整流組件,不過,在選用MOSFET時有一些注意事項。

功率MOSFET和雙極型晶體管不同,它的柵極電容比較大,在導通之前要先對該電容充電,當電容電壓超過閾值電壓(VGS-TH)時MOSFET才開始導通。因此,柵極驅動器的負載能力必須足夠大,以保證在系統要求的時間內完成對等效柵極電容(CEI)的充電。

在計算柵極驅動電流時,最常犯的一個錯誤就是將MOSFET的輸入電容(CISS)和CEI混為一談,于是會使用下面這個公式去計算峰值柵極電流。

I = C(dv/dt)

實際上,CEI的值比CISS高很多,必須要根據MOSFET生產商提供的柵極電荷(QG)指標計算。

QG是MOSFET柵極電容的一部分,計算公式如下:

QG = QGS + QGD + QOD

其中:

QG--總的柵極電荷

QGS--柵極-源極電荷

QGD--柵極-漏極電荷(Miller)

QOD--Miller電容充滿后的過充電荷

典型的MOSFET曲線如圖1所示,很多MOSFET廠商都提供這種曲線。可以看到,為了保證MOSFET導通,用來對CGS充電的VGS要比額定值高一些,而且CGS也要比VTH高。柵極電荷除以VGS等于CEI,柵極電荷除以導通時間等于所需的驅動電流(在規定的時間內導通)。

用公式表示如下:

QG =(CEI)(VGS)

IG = QG/t導通

其中:

● QG 總柵極電荷,定義同上。

● CEI 等效柵極電容

● VGS 刪-源極間電壓

● IG 使MOSFET在規定時間內導通所需柵極驅動電流

圖1

以往的SMPS控制器中直接集成了驅動器,這對于某些產品而言非常實用,但是,由于這種驅動器的輸出峰值電流一般小于1A,所以應用范圍比較有限。另外,驅動器發出的熱還會造成電壓基準的漂移。

隨著市場對“智能型”電源設備的呼聲日漸強烈,人們研制出了功能更加完善的SMPS控制器。這些新型控制器全部采用精細的CMOS工藝,供電電壓低于12V,集成的MOSFET驅動器同時可作為電平變換器使用,用來將TTL電平轉換為MOSFET驅動電平。以TC4427A為例,該器件的輸入電壓范圍(VIL = 0.8V,VIH = 2.4V)和輸出電壓范圍(與最大電源電壓相等,可達18V)滿足端到端(rail-to-rail)輸出的要求。

抗鎖死能力是一項非常重要的指標,因為MOSFET一般都連接著感性電路,會產生比較強的反向沖擊電流。TC4427型MOSFET驅動器的輸出端可以經受高達0.5A的反向電流而不損壞,性能不受絲毫影響。

另外一個需要注意的問題是對瞬間短路電流的承受能力,對于高頻SMPS尤其如此。瞬間短路電流的產生通常是由于驅動電平脈沖的上升或下降過程太長,或者傳輸延時過大,這時高壓側和低壓側的MOSFET在很短的時間里處于同時導通的狀態,在電源和地之間形成了短路。瞬間短路電流會顯著降低電源的效率,使用專用的MOSFET驅動器可以從兩個方面改善這個問題:

1.MOSFET柵極驅動電平的上升時間和下降時間必須相等,并且盡可能縮短。TC4427型驅動器在配接1000pF負載的情況下,脈沖上升時間tR和下降時間tF大約是25ns。其他一些輸出峰值電流更大的驅動器的這兩項指標還可以更短。

圖2

2.驅動脈沖的傳播延時必需很短(與開關頻率匹配),才能保證高壓側和低壓側的MOSFET具有相等的導通延遲和截止延遲。例如,TC4427A型驅動器的脈沖上升沿和下降沿的傳播延遲均小于2ns(如圖2)。這兩項指標會因電壓和溫度不同而變化。Microchip公司的產品在這項指標上已經躋身領先位置(同類產品此項指標至少要大4倍,集成在SMPS控制器中的驅動器這項指標更不理想)。

以上這些問題(直接關系到成本和可靠性)在獨立的、專用的驅動器中都已得到了比較好的處理,但是在集成型器件或傳統的分立器件電路中卻遠未如此。

典型應用

便攜式計算機電源

圖3為一個高效率同步升壓變換器的電路,其輸入電壓范圍是5V至30V,可以與AC/DC整流器(14V/30V)相連,也可以用電池供電(7.2V至10.8V)。

圖3

圖3中的TC1411N是一種低壓側驅動器,TC1411N的輸出峰值電流為1A,由于使用+5V供電,可以降低因柵極過充電引起的截止延時。TC4431是高壓側驅動器,輸出峰值電流可達1.5A。用這兩種器件驅動的MOSFET可以承受持續30ns、大小為10A的漏極電流。

臺式電腦電源

圖4為一種臺式電腦的電源電路,其中的同步降壓變換器一般用于CPU的供電,其輸出電流一般不低于6A。這種電路可以提供大小可調的電壓,而目前常見的分立器件電源卻做不到。

圖4的電路要比圖3簡單些,TC4428A在這里用作高壓側和低壓側的驅動器,并且共享電源VDD;為了降低成本,電路中使用了N溝道MOSFET。TC4428A的輸出能力較強,用它驅MOSFET可以承受持續25ns、大小為10A的漏極電流。

圖4

功率MOSFET以其導通電阻低和負載電流大的突出優點,已經成為SMPS控制器中開關組件的最佳選擇,專用MOSFET驅動器的出現又為優化SMPS控制器帶來了契機。那些與SMPS控制器集成在一起的驅動器只適用于電路簡單、輸出電流小的產品;而那些用分立的有源或無源器件搭成的驅動電路既不能滿足對高性能的要求,也無法獲得專用單片式驅動器件的成本優勢。專用驅動器的脈沖上升延時、下降延時和傳播延遲都很短暫,電路種類也非常齊全,可以滿足各類產品的設計需要。

第五篇:大功率開關電源中功率MOSFET的驅動技術

大功率開關電源中功率MOSFET的驅動技術

電源網訊 功率MOSFET具有導通電阻低、負載電流大的優點,因而非常適合用作開關電源(switch-mode powersupplies,SMPS)的整流組件,不過,在選用MOSFET時有一些注意事項。功率MOSFET和雙極型晶體管不同,它的柵極電容比較大,在導通之前要先對該電容充電,當電容電壓超過閾值電壓(VGS-TH)時MOSFET才開始導通。因此,柵極驅動器的負載能力必須足夠大,以保證在系統要求的時間內完成對等效柵極電容(CEI)的充電。

在計算柵極驅動電流時,最常犯的一個錯誤就是將MOSFET的輸入電容(CISS)和CEI混為一談,于是會使用下面這個公式去計算峰值柵極電流。I = C(dv/dt)實際上,CEI的值比CISS高很多,必須要根據MOSFET生產商提供的柵極電荷(QG)指標計算。

QG是MOSFET柵極電容的一部分,計算公式如下: QG = QGS + QGD + QOD 其中:

QG--總的柵極電荷 QGS--柵極-源極電荷

QGD--柵極-漏極電荷(Miller)QOD--Miller電容充滿后的過充電荷

典型的MOSFET曲線如圖1所示,很多MOSFET廠商都提供這種曲線。可以看到,為了保證MOSFET導通,用來對CGS充電的VGS要比額定值高一些,而且CGS也要比VTH高。柵極電荷除以VGS等于CEI,柵極電荷除以導通時間等于所需的驅動電流(在規定的時間內導通)。用公式表示如下:QG =(CEI)(VGS)IG = QG/t導通 其中:

● QG 總柵極電荷,定義同上。● CEI 等效柵極電容 ● VGS 刪-源極間電壓

● IG 使MOSFET在規定時間內導通所需柵極驅動電流

圖1 以往的SMPS控制器中直接集成了驅動器,這對于某些產品而言非常實用,但是,由于這種驅動器的輸出峰值電流一般小于1A,所以應用范圍比較有限。另外,驅動器發出的熱還會造成電壓基準的漂移。隨著市場對“智能型”電源設備的呼聲日漸強烈,人們研制出了功能更加完善的SMPS控制器。這些新型控制器全部采用精細的CMOS工藝,供電電壓低于12V,集成的MOSFET驅動器同時可作為電平變換器使用,用來將TTL電平轉換為MOSFET驅動電平。TC4427A為例,該器件的輸入電壓范圍(VIL =0.8V,VIH = 2.4V)和輸出電壓范圍(與最大電源電壓相等,可達18V)滿足端到端(rail-to-rail)輸出的要求。

抗鎖死能力是一項非常重要的指標,因為MOSFET一般都連接著感性電路,會產生比較強的反向沖擊電流。TC4427型MOSFET驅動器的輸出端可以經受高達0.5A的反向電流而不損壞,性能不受絲毫影響。另外一個需要注意的問題是對瞬間短路電流的承受能力,對于高頻SMPS尤其如此。瞬間短路電流的產生通常是由于驅動電平脈沖的上升或下降過程太長,或者傳輸延時過大,這時高壓側和低壓側的MOSFET在很短的時間里處于同時導通的狀態,在電源和地之間形成了短路。瞬間短路電流會顯著降低電源的效率,使用專用的MOSFET驅動器可以從兩個方面改善這個問題:

1.MOSFET柵極驅動電平的上升時間和下降時間必須相等,并且盡可能縮短。TC4427型驅動器在配接1000pF負載的情況下,脈沖上升時間tR和下降時間tF大約是25ns。其他一些輸出峰值電流更大的驅動器的這兩項指標還可以更短。

2.驅動脈沖的傳播延時必需很短(與開關頻率匹配),才能保證高壓側和低壓側的MOSFET具有相等的導通延遲和截止延遲。例如,TC4427A型驅動器的脈沖上升沿和下降沿的傳播延遲均小于2ns(如圖2)。這兩項指標會因電壓和溫度不同而變化。Microchip公司的產品在這項指標上已經躋身領先位置(同類產品此項指標至少要大4倍,集成在SMPS控制器中的驅動器這項指標更不理想)。以上這些問題(直接關系到成本和可靠性)在獨立的、專用的驅動器中都已得到了比較好的處理,但是在集成型器件或傳統的分立器件電路中卻遠未如此。典型應用

便攜式計算機電源,圖3為一個高效率同步升壓變換器的電路,其輸入電壓范圍是5V至30V,可以與AC/DC整流器

(14V/30V)相連,也可以用電池供電(7.2V至10.8V)。

圖3 圖3中的TC1411N是一種低壓側驅動器,TC1411N的輸出峰值電流為1A,由于使用+5V供電,可以降低因柵極過充電引起的截止延時。TC4431是高壓側驅動器,輸出峰值電流可達1.5A。用這兩種器件驅動的MOSFET可以承受持續30ns、大小為10A的漏極電流。臺式電腦電源

圖4為一種臺式電腦的電源電路,其中的同步降壓變換器一般用于CPU的供電,其輸出電流一般不低于6A。這種電路可以提供大小可調的電壓,而目前常見的分立器件電源卻做不到。圖4的電路要比圖3簡單些,TC4428A在這里用作高壓側和低壓側的驅動器,并且共享電源VDD;為了降低成本,電路中使用了N溝道MOSFET。TC4428A的輸出能力較強,用它驅MOSFET可以承受持續25ns、大小為10A的漏極電流。

圖4 功率MOSFET以其導通電阻低和負載電流大的突出優點,已經成為SMPS控制器中開關組件的最佳選擇,專用MOSFET驅動器的出現又為優化SMPS控制器帶來了契機。那些與SMPS控制器集成在一起的驅動器只適用于電路簡單、輸出電流小的產品;而那些用分立的有源或無源器件搭成的驅動電路既不能滿足對高性能的要求,也無法獲得專用單片式驅動器件的成本優勢。專用驅動器的脈沖上升延時、下降延時和傳播延遲都很短暫,電路種類也非常齊全,可以滿足各類產品的設計需要。

下載基于DSP的大功率開關電源的設計方案word格式文檔
下載基于DSP的大功率開關電源的設計方案.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    電壓型大功率開關電源補償網絡的分析

    電壓型大功率開關電源補償網絡的分析 引言 電壓型單環回路控制簡單,在各個領域應用最為廣泛。應用于小功率開關電源時,補償網絡可以簡單地用分壓反饋與基準放大比較來實現。......

    大功率開關電源設計的電源管理監控芯片

    大功率開關電源設計的電源管理監控芯片 從功率預算的角度來看,這些電阻的存在是極不適宜的,因為無論電源是否工作,它們都會持續消耗功率。在所示的應用中,輸入濾波器使用100nF的......

    大功率開關電源的EMC測試分析及正確選擇EMI濾波器

    大功率開關電源的EMC測試分析及正確選擇EMI濾波器 開關電源具有體積小、重量輕、效率高等優點,廣泛應用于各個領域。由于開關電源固有的特點,自身產生的各種噪聲卻形成一個很......

    開關電源5篇范文

    開關電源 開關電源 開關電源是利用現代電力電子技術,控制開關管開通和關斷的時間比率,維持穩定輸出電壓的一種電源,開關電源一般由脈沖寬度調制(PWM)控制IC和MOSFET構成。開關電......

    開關電源及模塊市場需求分析范文大全

    開關電源及模塊電源的市場需求分析簡要介紹一下相關市場需求量大、而又急需,供應少的電源需求。 1. 電力電源(針對中國新電網標準,電網改造的新電源標準) 這兩年我國電網改革,據我......

    開關電源心得

    單端反激式開關電源設計心得體會 原理圖 一、電路組成及工作原理 單端反激式開關電源是一種單片開關電源,采用美國IP公司的開關電源芯片TOP226Y。單端是指開關電源芯片(本文......

    開關電源心得

    班級:電氣技術 姓名:張 學號: 單端反激式開關電源設計 原理圖 一、電路組成及工作原理 、 電路組成根據要求,本次設計控制電路形式為反激式,單端反激式電路比正激式開關電源少用......

    大功率檢討書

    尊敬的輔導員老師:您好!我們已經深刻的認識到了我們的錯誤。我們不應該學校領導再三申明禁止使用大功率電器的情況下,任然違反規定,因而,我們犯得是一個嚴重的原則性問題。在此,我......

主站蜘蛛池模板: 亚洲中文字幕无码永久在线不卡| 国精产品一区一区三区有限在线| 国产精品爽爽v在线观看无码| 高潮抽搐潮喷毛片在线播放| 亚洲色成人网一二三区| 天天躁日日躁狠狠躁超碰97| 国产成人涩涩涩视频在线观看| 免费无码无遮挡裸体视频| 国产精品无码制服丝袜| 96国产xxxx免费视频| 天堂资源中文网| 国产精品jk白丝在线播放| 亚洲av成人中文无码专区| 天堂tv亚洲tv无码tv| 国产精品无码mv在线观看| 国产大量精品视频网站| 无码精品国产dvd在线观看9久| 色多多性虎精品无码av| 精品国产sm最大网免费站| 亚洲aⅴ天堂av天堂无码app| 国产亚洲精品无码成人| 一区二区视频| 人人揉揉揉香蕉大免费| 亚洲精品久久久无码av片软件| 亚洲国产一二三精品无码| 麻豆国产成人av高清在线| 伊人久久综合狼伊人久久| 久久人人爽人人爽人人片av东京热| 中文字幕一本久久综合| 国产精品午夜爆乳美女视频| 亚洲成在人线在线播放| 国产成人精品无码专区| 特殊重囗味sm在线观看无码| 白丝女仆被??免费网站| 亚洲av成人无码一二三在线观看| 成人亚洲性情网站www在线观看| 国产精品亚洲综合色区韩国| aa片在线观看无码免费| 精品无码成人片一区二区98| 与子敌伦刺激对白播放的优点| 欧美孕妇xxxx做受欧美88|