久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

外文翻譯--使用語(yǔ)音識(shí)別技術(shù)控制的焊接機(jī)器人工作單元-精品

時(shí)間:2019-05-14 02:25:36下載本文作者:會(huì)員上傳
簡(jiǎn)介:寫(xiě)寫(xiě)幫文庫(kù)小編為你整理了多篇相關(guān)的《外文翻譯--使用語(yǔ)音識(shí)別技術(shù)控制的焊接機(jī)器人工作單元-精品》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫(xiě)寫(xiě)幫文庫(kù)還可以找到更多《外文翻譯--使用語(yǔ)音識(shí)別技術(shù)控制的焊接機(jī)器人工作單元-精品》。

第一篇:外文翻譯--使用語(yǔ)音識(shí)別技術(shù)控制的焊接機(jī)器人工作單元-精品

Use of Voice Recognition for Control of a Robotic

Welding Workcell

ABSTRACT: This paper describes work underway to evaluate the effectiveness of voice recognition systems as an element in the control of a robotic welding workcell.Factors being considered for control include program editor access security,Preoperation checklist requirements, welding process variable control,and robot manipulator motion overrides.In the latter two categories, manual vocal control is being compared against manual tactile control and fully automatic control in terms of speed of response, accuracy, stability, reliability.And safety.Introduction

Voice recognition technology is now recognized as a potential means for easing the workload of operators of complex systems.Numerous applications have already been implemented, are in various stages of development, or are under consideration.These include data entry,control of aircraft systems, and voice identification and verification for security purposes.Voice control has also been proposed for use aboard the space station.One prime area for application would be control of some functions of robots used for intraand extravehicular inspection, assembly, repair,satellite retrieval, and satellite maintenance when a crewmember is serving in a supervisory capacity or the system is operating in a teleoperation mode.Voice control of sensors and process variables would free the crewmember’s hands for other tasks, such as direct control or override of the manipulator motion.Similarly, the workload associated with control of many onboard experiments could be eased through the use of this technology.This paper describes the application of voice recognition for control of a robotic welding workcell.This is a complex system involving inputs from multiple sensors and control of a wide variety of robot manipulator motions and process variables.While many functions are automated, a human operator serves in a supervisory capacity, ready to override functions when necessary.In the present investigation, a commercially available voice recognition system is being integrated with a robotic welding workcell at NASA Marshall Space Flight Center, which is used as a test bed for evaluation and development of advanced technologies for use in fabrication of the Space Shuttle Main Engine.In the system under development, some functions do not yet have automatic closedloop control, thus requiring continuous monitoring and real-time adjustment by the human operator.Presently, these ovemdes are input to the system through tactile commands(;.e..pushing buttons.turning knobs for potentiometers, or adjusting mechanical devices).Since the operator monitors the process primarily visually, he must either look away from the process to find the proper button or knob or rely on“muscular memory”much as a touch-typist does.In the first case, the time of response to a deviant condition may be excessive.In the second case, there is an increased probability of a secondary error being introduced by the operator.A voice recognition system could reduce the response time required from the operator.The probability of pushing the wrong button should similarly be reduced.Also, operator fatigue should be minimized.Since the operator can continuously monitor the process during override input, the effect of the change can be observed more quickly.Thus, if the desired value is exceeded and reverse correction is required, it should be accomplished more quickly, allowing less overshoot.This reduction in oscillation about the desired value makes the system more stable.Another factor that can be improved is operator safety.In a safety-critical situation,the robot’s operation can be halted immediately by use of the “emergency stop,’’ or E-stop, mode, which is initiated, conventionally, by depressing a large button.If an operator inadvertently finds himself in a hazardous situation, it may be necessary for him to initiate the E-stop sequence.Should the operator not be within reach of the button,however, he may be unable to take the necessary action, and, as a result, could suffer serious injury.Having the capability of stopping the robot by issuing a voice command could significantly improve the operator’s safety by enabling him to stop the robot even when not within reach of the E-stop button.Manual corrections are occasionally required to adjust the location at which the weld filler wire enters the weld pool.Proper entry location is absolutely critical to sound weld quality.Adjustments are made either by manually adjusting mechanisms that hold the wirefeed guide tube or by issuing tactile commands to a servomechanism.Use of a voice recognition system could eliminate the need for the operator to place his hand within the working envelope of the robot end effector or, if servomechanisms are employed,could improve speed of response and stability.Another aspect of robot operation in an industrial environment that is very important is the security of a program editing capability of the system.Under no circumstances should any unauthorized person be able to enter this programming mode and alter the robot’s program.A voice recognition system can provide the necessary security by allowing access only for individuals who are authorized and whose voices can be identified by the system.Background

Robotic welding is under development by NASA and Rocketdyne for the automation of welds on the Space Shuttle Main Engine that are presently made manually.The programmability of a robot can reduce the percentage of welding defects through a combination of consistency and repeatability unattainable by its human counterparts.To do this, the robot is programmed to a nominal weld path and level of weld process parameters(i.e., current, travel speed.voltage,wire addition rate).Some adjustment of these values is often necessary due to conditions changing during the weld.A human making a manual weld accomplishes this adjustment readily, while a robot must rely on the limited talents of sensors and the ability of the operator to override functions when necessary.System Integration

The basic elements of the workcell system are shown diagrammatically in the illustration.The ultimate goal of the system development work in progress is to generate robot manipulator programs and weld process programs off line, download them to the workcell supervisory computer, then use sensor subsystems to make closed-loop corrections to the robot path and process variables.Offline programming is being done with an Intergraph modified VAX 780/785-205 computer system with Interact color graphics workstations.Deviations between the programmed robot path and the actual required path are observed and corrected by a sophisticated vision-based sensor developed for this application by Ohio State University.This sensor system is also designed to permit measurement of the molten weld pool surface dimensions and correct welding current level to maintain the weld pool dimensions within desired limits.Presently, a number of functions are still controlled manually, and manual overrides capability is required for all functions.As stated in the Introduction, use of voice recognition may improve the accuracy and speed of response of these manual overrides.To explore this technology, a Votan VRT 6050 stand-alone voice recognition terminal has been integrated into the workcell.This system provides continuous speech recognition of up to 10 sets of words with 75-150 words per set.The integration of the voice recognition system is broken into analog and discrete signals for control.The voice recognition system connects to the control computer through a standard RS232-C communications link.Discrete Control Signals

In this project, most of the control circuitry is based on discrete digital signals.This is due to the on/off state nature of the circuits to be controlled in the robot controller.The circuits of the system to be controlled by the voice recognition control computer(VRCC)by discrete signals are the emergency stop circuit and the positive jog and negative jog circuits for motion control.Since the safety of the operator is paramount in any automated workcell, the voice recognition system should be incorporated as a safety feature.To accomplish this, the VRCC has been interfaced into the workcell emergency stop circuit.The emergency stop circuit in the robotic workcell will shut down the welding process and the mechanical motion of the manipulators.Through the use of a digital signal from the VRCC, a relay is energized that interrupts the necessary circuits in the weld power supply and robot controller.With the use of the voice recognition system as a safety control for this workcell, we have added a third level of redundancy into the emergency stopping ability of the operator(in addition to the present emergency stop buttons).Manipulator motions are controlled through an axis select button in conjunction with a positive or negative jog button that is depressed by the operator.Once the operator has selected an axis, he depresses one of the jog buttons for the desired travel distance.This function was selected to be controlled by the VRCC because of its utilization during automatic operation of the manipulator to correct trajectory errors.The circuitry necessary to control this operation draws the signal to ground through the activation of relays for the positive or negative jog motion.Because motion is achieved only as long as these signals are active low.they can be controlled by discrete digital signals from the VRCC.Analog Control Signals

There are many variables that affect the quality of weld during the welding process.but the welding current has the greatest effect over a small range of values.It was for this reason, that the welding current was chosen to be controlled by the voice recognition system.The welding power supply controls the current level through a voltage circuit that uses a range of 0-10 V DC.These voltage values are converted to current levels from 0 to 300 A for welding.A digital-to-analog converter is used in conjunction with a multiplying circuit.The converter allows the VRCC to control a voltage level that is used by the weld power supply to achieve the proper welding current.The multiplier circuit is necessary to allow the weld power supply to be controlled by the other subcontroller used in the workcell.Experimental Investigation

The accuracy and speed of response of corrections to robot manipulator motion and welding process variables made with the VRCC are being compared with those made with the original control system.Step input errors to robot motion and welding current are introduced randomly into the robot program.By graphically recording relevant system output signals,the time required for the operator to detect the change and initiate corrective action may be measured.Response accuracy and stability may also be gaged through similar analysis of the relevant recorded system output signals.Conclusions

Future work will investigate voice control of welding filler wirefeed speed and location of wire entry into the weld pool.Also to be investigated is voice control of welding arc voltage override.Later, restriction of access to the robot program editor by voice recognition may be implemented.The use of voice recognition technology for manual supervisory control of industrial robot systems is very promising.This technology has application for aerospace welding due to the need to have constant human supervision over a multitude of process parameters in real time.Future development of this technology will permit rapid expansion of its application to both robotic and nonrobotic processes.Acknowledgment

Special thanks to Mr.Jeff Hudson of Martin Marietta Corporation for assistance in the preparation of the illustration presented in this article.References

[1] C.A.Simpson.hl.E.McCauley.E.F.Rolland.J.C.Ruth.and B.H.Williges.“System Design for Speech Recognition and Generation.” Hutnnn Factors.vol.27.no.2.pp.115-1-11.1985.[2] National Research Council.Committee on Computerized Speech Recognition Technologies.Automatic Speech Rerop1irior1 in severe Environments National Research Council.1984.[3] E.J.Lerner.“Talking to Your Aircraft.” Aerospace America.vol.24.no.2.pp.85-88.1986.[4] J.T.Memlield.“Bosing Explores Voice Recognition for Future Transpon Flight Deck.” Ariarinn Week and Space Techno/-og!.vol.124.no.16.pp.85-91.1986.[5] A.Cohen and J.D.Erickson,..Future Uses of Machine Intelligence and Robotics for the Space Station and Implications for the U.S.Economy.'' IEEE J.Robotics and Automarion.vol.SMC-16.pp.1 11-12 I.Jan.iFeb.1986 [6] “Automation and Robotics for the National Space Program,” California Space Institute Automation and Robotics Panel.Cal Space Repon CS1185-01, Feb.25, 1985.[7] “Advancing Automation and Robotics Technology for the Space Station and for the U.S.Economy.” Advanced Technology AdvisoryCommittee.NASA TM 87566.Mar.1985.使用語(yǔ)音識(shí)別技術(shù)控制的焊接機(jī)器人工作單元

摘要:本文論述了使用聲音識(shí)別技術(shù)的焊接機(jī)器人工作單元在工作過(guò)程中的效果、程序編輯者接近機(jī)器人的安全﹑試行運(yùn)轉(zhuǎn)的必要性﹑焊接過(guò)程的控制變量﹑機(jī)器人操作者的動(dòng)作規(guī)范等因素給與考慮。在焊接過(guò)程控制和操作動(dòng)作兩個(gè)方面,按照反應(yīng)速度﹑定位精確性﹑焊接穩(wěn)定性﹑焊接可靠性和安全性把人工聲音控制與手工觸覺(jué)控制和完全自動(dòng)化控制進(jìn)行了比較。

緒論

聲音識(shí)別技術(shù)已經(jīng)成為可能緩解操作者工作負(fù)擔(dān)的一種有潛力的復(fù)雜系統(tǒng)。許多應(yīng)用已經(jīng)落實(shí),或正陸續(xù)開(kāi)發(fā),或正在研究之中。這些措施包括數(shù)據(jù)的輸入﹑飛機(jī)的控制﹑和以安全為目的的語(yǔ)音識(shí)別。

許多應(yīng)用語(yǔ)音控制技術(shù)還建議用于太空站.一個(gè)主要的應(yīng)用領(lǐng)域?qū)C(jī)器人控制功能用于太空艙內(nèi)檢查、裝配、維修、衛(wèi)星回收、維修衛(wèi)星,是在船上服務(wù)的監(jiān)督能力和系統(tǒng)運(yùn)作模式的反饋.聲音感應(yīng)器和過(guò)程控制的變數(shù)將使船員影響他手上的其它工作,例如直接控制或推翻的操縱議案。同樣,利用工作量控制機(jī)載實(shí)驗(yàn)這種技術(shù)可以緩解許多工作負(fù)擔(dān)。

這份文件描述應(yīng)用語(yǔ)音識(shí)別控制的焊接機(jī)器人工作單元。這是一個(gè)復(fù)雜的系統(tǒng),涉及多個(gè)傳感器及控制投入各種機(jī)械操作件和變化多樣的工藝參數(shù)。雖然許多功能是自動(dòng)化,且為人類(lèi)監(jiān)督管理能力所控制,但在必要時(shí)隨時(shí)準(zhǔn)備超越這些功能。在當(dāng)前的調(diào)查中,在美國(guó)航天局的馬歇爾空間飛行中心可供商業(yè)使用語(yǔ)音識(shí)別系統(tǒng)結(jié)合了焊接機(jī)器人工作單元的技術(shù),這一技術(shù)作為試點(diǎn)的評(píng)價(jià)和開(kāi)發(fā)先進(jìn)技術(shù)并用于制造航天飛機(jī)主發(fā)動(dòng)機(jī)。在系統(tǒng)開(kāi)發(fā)中,有些功能尚不具備自動(dòng)跟蹤控制,因此需要不斷地人力監(jiān)測(cè)和實(shí)時(shí)調(diào)整操作。目前,該系統(tǒng)投入方案是通過(guò)觸覺(jué)指令(即: 推動(dòng)按鈕.旋轉(zhuǎn)電位計(jì)、或者調(diào)整機(jī)械裝置)。由于操作過(guò)程中,主要監(jiān)測(cè)者必須考慮在遠(yuǎn)離的過(guò)程中尋找適當(dāng)?shù)陌粹o或把手或靠像打字員一樣那種打字時(shí)的肌肉記憶。第二種情況,可能由于操作者的的二次反應(yīng)而增加了錯(cuò)誤發(fā)生的可能性。

一個(gè)語(yǔ)音識(shí)別系統(tǒng)可減少操作者的反應(yīng)時(shí)間。操作者按錯(cuò)按鈕的可能性了同樣的也會(huì)減少。并且,操作者勞累也會(huì)大大減小。

由于在方案運(yùn)行的過(guò)程中操作者不斷監(jiān)測(cè),可以更快地觀察到運(yùn)行狀況改變所帶來(lái)的影響。因此,如果超過(guò)了預(yù)期值,應(yīng)該更快糾正,,但不能太過(guò)度。這對(duì)減少振蕩,使系統(tǒng)更加穩(wěn)定的實(shí)現(xiàn)了預(yù)期的價(jià)值。

另一個(gè)因素是可以改善操作者的安全.。在一個(gè)安全的緊急情況下,機(jī)器人的操作者可以采取緊急停止來(lái)停止其運(yùn)行,這種緊急停止模式一般來(lái)說(shuō)是設(shè)置一個(gè)大按鈕,按慣例是一種經(jīng)常用的方式。如果操作者無(wú)意中發(fā)現(xiàn)自己在危險(xiǎn)的情況下,這時(shí)也許他有必要采取緊急停止這種模式。如果操作者不能夠按到的按鈕,可他也沒(méi)有能力采取必要的行動(dòng)時(shí),這樣下去,他可能會(huì)受重傷。如果操作者者能通過(guò)發(fā)出聲音指令來(lái)停止機(jī)器人的運(yùn)行那將會(huì)大大的改善操作者的安全,即使操作者在不能按到緊急停止按鈕無(wú)法停止機(jī)器的情況下也將很安全。

手工調(diào)整有時(shí)候需要適應(yīng)焊絲填充到焊接溶池中的位置。填充到正確合適的位置是焊接質(zhì)量的關(guān)鍵。既可通過(guò)手工調(diào)節(jié)機(jī)制來(lái)控制送絲導(dǎo)管也可給自動(dòng)控制裝置發(fā)出移動(dòng)指令來(lái)進(jìn)行調(diào)整。使用語(yǔ)音識(shí)別系統(tǒng)可以讓操作者者不必再把機(jī)器人控制效應(yīng)得指令文件拿在手中,如自動(dòng)控制裝置被使用,可以改善操作的反應(yīng)速度和運(yùn)行穩(wěn)定性。

另一方面,編輯系統(tǒng)程序權(quán)限的安全是工業(yè)機(jī)器人在作業(yè)環(huán)境中很重要的一個(gè)安全。在任何情況下,任何未經(jīng)授權(quán)的人能進(jìn)入程序編輯模式,并且可以改變機(jī)器人的控制程序。一個(gè)語(yǔ)音識(shí)別系統(tǒng),可提供必要的安全,使他們那些久久是獲得授權(quán)的人的聲音,才能被機(jī)器人系統(tǒng)識(shí)別。

背景

美國(guó)航天局正在開(kāi)發(fā)焊接機(jī)器人并且焊接自動(dòng)化設(shè)備來(lái)代替目前正在用手工焊接的航天飛機(jī)的主發(fā)動(dòng)機(jī)。使用該機(jī)器人的程序,可以通過(guò)用手工來(lái)難以做到的焊接一致性和重復(fù)操作來(lái)達(dá)到減少焊接缺陷的比例。為此,焊接機(jī)可以編成控制額定的焊接通路和所需要的焊接過(guò)程參數(shù),(即焊接電流、焊接速度、焊接電壓、送絲速度等)。當(dāng)焊接條件改變的時(shí)候做一些有價(jià)值調(diào)整是很有必要的。一個(gè)人用手工來(lái)操作焊接時(shí)作出調(diào)整是很容易的,但是機(jī)器人的調(diào)節(jié)靠傳感器的智能和必要的人工操作者的方案調(diào)節(jié)。

系統(tǒng)綜述

機(jī)器人工作系統(tǒng)的基本情況如圖表所示,最終的系統(tǒng)開(kāi)發(fā)工作是編輯操作的程序和焊接過(guò)程生產(chǎn)線的控制程序,下載這些程序到控制工作單元的電腦,然后使用子系統(tǒng)傳感器修正機(jī)器人的運(yùn)行路徑和過(guò)程,使其可變。利用VAX 780/785-205電腦連接到彩色圖形處理工作站來(lái)進(jìn)行圖表處理實(shí)現(xiàn)脫機(jī)設(shè)計(jì)。機(jī)器人由于程序編輯和實(shí)際需要之間的偏差是通過(guò)俄亥俄州大學(xué)研究的精密的視覺(jué)傳感器來(lái)發(fā)現(xiàn)和糾正的。這種傳感系統(tǒng)也設(shè)計(jì)成允許測(cè)量焊接溶池表面尺寸和改變電流大小來(lái)調(diào)節(jié)焊接溶池保持理想的形狀。目前,仍有許多功能人工控制,而且各個(gè)方面的功能都需要人工的操作。如前緒論中所述,引進(jìn)聲音識(shí)別技術(shù)可以改進(jìn)人工操作的準(zhǔn)確性和反應(yīng)速度。為研究這項(xiàng)技術(shù),Votan VRT 6050聲音識(shí)別單機(jī)終端被引入到機(jī)器人的工作單元中。這個(gè)連續(xù)的語(yǔ)音識(shí)別系統(tǒng)可以提供多達(dá)10套,每套有75—150句話。

把語(yǔ)音識(shí)別系統(tǒng)的模擬和離散信號(hào)輸入控制。語(yǔ)音識(shí)別系統(tǒng)通過(guò)RS232-C的通信連接到控制主機(jī)。

圖1焊接機(jī)器人系統(tǒng)設(shè)計(jì)

離散控制信號(hào)

在這個(gè)項(xiàng)目中,大多數(shù)控制電路是基于不同的數(shù)字信號(hào)。這主要是用在一些國(guó)產(chǎn)性質(zhì)的機(jī)器人控制器上的。通過(guò)語(yǔ)音識(shí)別技術(shù)控制的計(jì)算機(jī)來(lái)控制的電路系統(tǒng)是通過(guò)一種離散信號(hào)來(lái)控制,這種信號(hào)有緊急停止電路和積極響應(yīng)和消極響應(yīng)電路的功能。

因?yàn)槿魏巫詣?dòng)化工作單元中操作者的安全是必須保障的,所以應(yīng)把語(yǔ)音識(shí)別系統(tǒng)的安全也考慮在內(nèi)。為達(dá)到這一目標(biāo),貞技術(shù)已引入緊急停止電路的工作單元。機(jī)器人工作單元中的緊急停止電路將會(huì)停止焊接過(guò)程的終止操作者的操作。通過(guò)使用數(shù)字貞信號(hào),需要中斷焊接動(dòng)力供電線路和機(jī)器人控制器的繼電器被廣泛使用。由于在這一工作單元中使用的語(yǔ)音識(shí)別技術(shù)這一安全系統(tǒng),我們又增加了第三種供選擇的緊急停車(chē)的方案(除了現(xiàn)在已經(jīng)有的緊急停車(chē)按鈕)。

方案是通過(guò)操作者在軸配合正按鈕或負(fù)按鈕之間選擇來(lái)實(shí)現(xiàn)控制的。一旦操作者選擇了軸,它可以在理想的距離之內(nèi)控制負(fù)按鈕。這種功能的選用是通過(guò)控貞信號(hào)來(lái)控制的,因?yàn)樨懶盘?hào)的使用在自動(dòng)操作中可以糾正運(yùn)行的錯(cuò)誤。在這一操作中有必要通過(guò)繼電器的正負(fù)極的地面信號(hào)來(lái)達(dá)到目的。只因?yàn)檫@些信號(hào)很微弱才能達(dá)到目的。他們可以通過(guò)貞信號(hào)遠(yuǎn)距離控制。

模擬控制信號(hào)

有很多因素影響焊接過(guò)程的質(zhì)量,但是焊接電流對(duì)焊接質(zhì)量的影響絕不是一個(gè)小的因素。正因?yàn)槿绱耍院附与娏鞅贿x擇為聲音識(shí)別系統(tǒng)控制的對(duì)象。

使用0—10V直流電壓來(lái)控制焊接電源從而控制電流大小,這種電壓可以使電流在焊接過(guò)程中從0—300A之間變化。數(shù)子—模擬轉(zhuǎn)化器配合的電路在廣泛的使用。這種轉(zhuǎn)換器允許貞信號(hào)控制電壓的大小從而使電源能提供合適的焊接電流。這種電路必須允許焊接電源通過(guò)工作單元中的其它輔助設(shè)備來(lái)控制。

實(shí)驗(yàn)研究

在準(zhǔn)確性和反應(yīng)速度方面通過(guò)貞信號(hào)控制的各種焊接過(guò)程與原始的控制系統(tǒng)進(jìn)行了比較。目前焊接機(jī)器人操作的的輸入誤差提和焊接電流已經(jīng)被引入到機(jī)器人程序中。通過(guò)圖表記錄了系統(tǒng)相關(guān)的信號(hào),可以通過(guò)操作者發(fā)覺(jué)錯(cuò)誤和糾正這一錯(cuò)誤所需要的時(shí)間來(lái)衡量。反應(yīng)的準(zhǔn)確性和穩(wěn)定性也可以通過(guò)類(lèi)似的記錄儀器來(lái)分析系統(tǒng)信號(hào)的輸入。

結(jié)論

今后的工作將會(huì)把語(yǔ)音控制技術(shù)應(yīng)用到焊絲填充速度焊絲填入溶池位置的控制,也會(huì)將該技術(shù)用在弧焊電壓控制上。以后,那些現(xiàn)在在機(jī)器人編程受到限制的的方案在采用語(yǔ)音識(shí)別技術(shù)之后有可能實(shí)現(xiàn)。

利用語(yǔ)音識(shí)別技術(shù)控制工業(yè)機(jī)器人系統(tǒng)非常有前景的。由于航空焊接需要大量人力監(jiān)管過(guò)程實(shí)時(shí)參數(shù)控制所以這項(xiàng)技術(shù)已申請(qǐng)用于航空焊接。這一技術(shù)的未來(lái)發(fā)展將可迅速擴(kuò)展為機(jī)器人的應(yīng)用和非機(jī)器人的處理過(guò)程。

致謝

在此特別感謝Martin Marietta 公司的Mr.Jeff Hudson協(xié)助編作本篇論文。

參考文獻(xiàn)

[1] C.A.Simpson.hl.E.McCauley.E.F.Rolland.J.C.Ruth.and B.H.Williges.“System Design for Speech Recognition and Generation.” Hutnnn Factors.vol.27.no.2.pp.115-1-11.1985.[2] National Research Council.Committee on Computerized Speech Recognition Technologies.Automatic Speech Rerop1irior1 in severe Environments National Research Council.1984.[3] E.J.Lerner.“Talking to Your Aircraft.” Aerospace America.vol.24.no.2.pp.85-88.1986.[4] J.T.Memlield.“Bosing Explores Voice Recognition for Future Transpon Flight Deck.” Ariarinn Week and Space Techno/-og!.vol.124.no.16.pp.85-91.1986.[5] A.Cohen and J.D.Erickson,..Future Uses of Machine Intelligence and Robotics for the Space Station and Implications for the U.S.Economy.'' IEEE J.Robotics and Automarion.vol.SMC-16.pp.1 11-12 I.Jan.iFeb.1986 [6] “Automation and Robotics for the National Space Program,” California Space Institute Automation and Robotics Panel.Cal Space Repon CS1185-01, Feb.25, 1985.[7] “Advancing Automation and Robotics Technology for the Space Station and for the U.S.Economy.” Advanced Technology AdvisoryCommittee.NASA TM 87566.Mar.1985.

第二篇:智能語(yǔ)音識(shí)別機(jī)器人文獻(xiàn)翻譯

改進(jìn)型智能機(jī)器人的語(yǔ)音識(shí)別方法

2、語(yǔ)音識(shí)別概述

最近,由于其重大的理論意義和實(shí)用價(jià)值,語(yǔ)音識(shí)別已經(jīng)受到越來(lái)越多的關(guān)注。到現(xiàn)在為止,多數(shù)的語(yǔ)音識(shí)別是基于傳統(tǒng)的線性系統(tǒng)理論,例如隱馬爾可夫模型和動(dòng)態(tài)時(shí)間規(guī)整技術(shù)。隨著語(yǔ)音識(shí)別的深度研究,研究者發(fā)現(xiàn),語(yǔ)音信號(hào)是一個(gè)復(fù)雜的非線性過(guò)程,如果語(yǔ)音識(shí)別研究想要獲得突破,那么就必須引進(jìn)非線性系統(tǒng)理論方法。最近,隨著非線性系統(tǒng)理論的發(fā)展,如人工神經(jīng)網(wǎng)絡(luò),混沌與分形,可能應(yīng)用這些理論到語(yǔ)音識(shí)別中。因此,本文的研究是在神經(jīng)網(wǎng)絡(luò)和混沌與分形理論的基礎(chǔ)上介紹了語(yǔ)音識(shí)別的過(guò)程。

語(yǔ)音識(shí)別可以劃分為獨(dú)立發(fā)聲式和非獨(dú)立發(fā)聲式兩種。非獨(dú)立發(fā)聲式是指發(fā)音模式是由單個(gè)人來(lái)進(jìn)行訓(xùn)練,其對(duì)訓(xùn)練人命令的識(shí)別速度很快,但它對(duì)與其他人的指令識(shí)別速度很慢,或者不能識(shí)別。獨(dú)立發(fā)聲式是指其發(fā)音模式是由不同年齡,不同性別,不同地域的人來(lái)進(jìn)行訓(xùn)練,它能識(shí)別一個(gè)群體的指令。一般地,由于用戶(hù)不需要操作訓(xùn)練,獨(dú)立發(fā)聲式系統(tǒng)得到了更廣泛的應(yīng)用。所以,在獨(dú)立發(fā)聲式系統(tǒng)中,從語(yǔ)音信號(hào)中提取語(yǔ)音特征是語(yǔ)音識(shí)別系統(tǒng)的一個(gè)基本問(wèn)題。

語(yǔ)音識(shí)別包括訓(xùn)練和識(shí)別,我們可以把它看做一種模式化的識(shí)別任務(wù)。通常地,語(yǔ)音信號(hào)可以看作為一段通過(guò)隱馬爾可夫模型來(lái)表征的時(shí)間序列。通過(guò)這些特征提取,語(yǔ)音信號(hào)被轉(zhuǎn)化為特征向量并把它作為一種意見(jiàn),在訓(xùn)練程序中,這些意見(jiàn)將反饋到HMM的模型參數(shù)估計(jì)中。這些參數(shù)包括意見(jiàn)和他們響應(yīng)狀態(tài)所對(duì)應(yīng)的概率密度函數(shù),狀態(tài)間的轉(zhuǎn)移概率,等等。經(jīng)過(guò)參數(shù)估計(jì)以后,這個(gè)已訓(xùn)練模式就可以應(yīng)用到識(shí)別任務(wù)當(dāng)中。輸入信號(hào)將會(huì)被確認(rèn)為造成詞,其精確度是可以評(píng)估的。整個(gè)過(guò)程如圖一所示。

圖1 語(yǔ)音識(shí)別系統(tǒng)的模塊圖

3、理論與方法

從語(yǔ)音信號(hào)中進(jìn)行獨(dú)立揚(yáng)聲器的特征提取是語(yǔ)音識(shí)別系統(tǒng)中的一個(gè)基本問(wèn)題。解決這個(gè)問(wèn)題的最流行方法是應(yīng)用線性預(yù)測(cè)倒譜系數(shù)和Mel頻率倒譜系數(shù)。這兩種方法都是基于一種假設(shè)的線形程序,該假設(shè)認(rèn)為說(shuō)話者所擁有的語(yǔ)音特性是由于聲道共振造成的。這些信號(hào)特征構(gòu)成了語(yǔ)音信號(hào)最基本的光譜結(jié)構(gòu)。然而,在語(yǔ)音信號(hào)中,這些非線形信息不容易被當(dāng)前的特征提取邏輯方法所提取,所以我們使用分型維數(shù)來(lái)測(cè)量非線形語(yǔ)音擾動(dòng)。

本文利用傳統(tǒng)的LPCC和非線性多尺度分形維數(shù)特征提取研究并實(shí)現(xiàn)語(yǔ)音識(shí)別系統(tǒng)。

3.1線性預(yù)測(cè)倒譜系數(shù)

線性預(yù)測(cè)系數(shù)是一個(gè)我們?cè)谧稣Z(yǔ)音的線形預(yù)分析時(shí)得到的參數(shù),它是關(guān)于毗鄰語(yǔ)音樣本間特征聯(lián)系的參數(shù)。線形預(yù)分析正式基于以下幾個(gè)概念建立起來(lái)的,即一個(gè)語(yǔ)音樣本可以通過(guò)一些以前的樣本的線形組合來(lái)快速地估計(jì),根據(jù)真實(shí)語(yǔ)音樣本在確切的分析框架(短時(shí)間內(nèi)的)和預(yù)測(cè)樣本之間的差別的最小平方原則,最后會(huì)確認(rèn)出唯一的一組預(yù)測(cè)系數(shù)。

LPC可以用來(lái)估計(jì)語(yǔ)音信號(hào)的倒譜。在語(yǔ)音信號(hào)的短時(shí)倒譜分析中,這是一種特殊的處理方法。信道模型的系統(tǒng)函數(shù)可以通過(guò)如下的線形預(yù)分析來(lái)得到:

其中p代表線形預(yù)測(cè)命令,(k=1,2,? ?,p)代表預(yù)測(cè)參數(shù),脈沖響應(yīng)用

。那么(1)式可以擴(kuò)展為(2)式: h(n)來(lái)表示,假設(shè)h(n)的倒譜是

將(1)帶入(2),兩邊同時(shí),(2)變成(3)。

就獲得了方程(4):

那么 可以通過(guò)

來(lái)獲得。

(5)中計(jì)算的倒譜系數(shù)叫做LPCC,n代表LPCC命令。

在我們采集LPCC參數(shù)以前,我們應(yīng)該對(duì)語(yǔ)音信號(hào)進(jìn)行預(yù)加重,幀處理,加工和終端窗口檢測(cè)等,所以,中文命令字“前進(jìn)”的端點(diǎn)檢測(cè)如圖2所示,接下來(lái),斷點(diǎn)檢測(cè)后的中文命令字“前進(jìn)”語(yǔ)音波形和LPCC的參數(shù)波形如圖3所示。

圖2 中文命令字“前進(jìn)”的端點(diǎn)檢測(cè)

圖3 斷點(diǎn)檢測(cè)后的中文命令字“前進(jìn)”語(yǔ)音波形和LPCC的參數(shù)波形

3.2 語(yǔ)音分形維數(shù)計(jì)算

分形維數(shù)是一個(gè)與分形的規(guī)模與數(shù)量相關(guān)的定值,也是對(duì)自我的結(jié)構(gòu)相似性的測(cè)量。分形分維測(cè)量是[6-7]。從測(cè)量的角度來(lái)看,分形維數(shù)從整數(shù)擴(kuò)展到了分?jǐn)?shù),打破了一般集拓?fù)鋵W(xué)方面被整數(shù)分形維數(shù)的限制,分?jǐn)?shù)大多是在歐幾里得幾何尺寸的延伸。

有許多關(guān)于分形維數(shù)的定義,例如相似維度,豪斯多夫維度,信息維度,相關(guān)維度,容積維度,計(jì)盒維度等等,其中,豪斯多夫維度是最古老同時(shí)也是最重要的,它的定義如【3】所示:

其中,表示需要多少個(gè)單位來(lái)覆蓋子集F.端點(diǎn)檢測(cè)后,中文命令詞“向前”的語(yǔ)音波形和分形維數(shù)波形如圖4所示。

圖4 端點(diǎn)檢測(cè)后,中文命令詞“向前”的語(yǔ)音波形和分形維數(shù)波形

3.3 改進(jìn)的特征提取方法

考慮到LPCC語(yǔ)音信號(hào)和分形維數(shù)在表達(dá)上各自的優(yōu)點(diǎn),我們把它們二者混合到信號(hào)的特取中,即分形維數(shù)表表征語(yǔ)音時(shí)間波形圖的自相似性,周期性,隨機(jī)性,同時(shí),LPCC特性在高語(yǔ)音質(zhì)量和高識(shí)別速度上做得很好。

由于人工神經(jīng)網(wǎng)絡(luò)的非線性,自適應(yīng)性,強(qiáng)大的自學(xué)能力這些明顯的優(yōu)點(diǎn),它的優(yōu)良分類(lèi)和輸入輸出響應(yīng)能力都使它非常適合解決語(yǔ)音識(shí)別問(wèn)題。

由于人工神經(jīng)網(wǎng)絡(luò)的輸入碼的數(shù)量是固定的,因此,現(xiàn)在是進(jìn)行正規(guī)化的特征參數(shù)輸入到前神經(jīng)網(wǎng)絡(luò)[9],在我們的實(shí)驗(yàn)中,LPCC和每個(gè)樣本的分形維數(shù)需要分別地通過(guò)時(shí)間規(guī)整化的網(wǎng)絡(luò),LPCC是一個(gè)4幀數(shù)據(jù)(LPCC1,LPCC2,LPCC3,LPCC4,每個(gè)參數(shù)都是14維的),分形維數(shù)被模范化為12維數(shù)據(jù),(FD1,FD2,?FD12,每一個(gè)參數(shù)都是一維),以便于每個(gè)樣本的特征向量有4*14+12*1=68-D維,該命令就是前56個(gè)維數(shù)是LPCC,剩下的12個(gè)維數(shù)是分形維數(shù)。因而,這樣的一個(gè)特征向量可以表征語(yǔ)音信號(hào)的線形和非線性特征。

自動(dòng)語(yǔ)音識(shí)別的結(jié)構(gòu)和特征

自動(dòng)語(yǔ)音識(shí)別是一項(xiàng)尖端技術(shù),它允許一臺(tái)計(jì)算機(jī),甚至是一臺(tái)手持掌上電腦(邁爾斯,2000)來(lái)識(shí)別那些需要朗讀或者任何錄音設(shè)備發(fā)音的詞匯。自動(dòng)語(yǔ)音識(shí)別技術(shù)的最終目的是讓那些不論詞匯量,背景噪音,說(shuō)話者變音的人直白地說(shuō)出的單詞能夠達(dá)到100%的準(zhǔn)確率(CSLU,2002)。然而,大多數(shù)的自動(dòng)語(yǔ)音識(shí)別工程師都承認(rèn)這樣一個(gè)現(xiàn)狀,即對(duì)于一個(gè)大的語(yǔ)音詞匯單位,當(dāng)前的準(zhǔn)確度水平仍然低于90%。舉一個(gè)例子,Dragon's Naturally Speaking或者IBM公司,闡述了取決于口音,背景噪音,說(shuō)話方式的基線識(shí)別的準(zhǔn)確性?xún)H僅為60%至80%(Ehsani & Knodt, 1998)。更多的能超越以上兩個(gè)的昂貴的系統(tǒng)有Subarashii(Bernstein, et al., 1999), EduSpeak(Franco, etal., 2001), Phonepass(Hinks, 2001), ISLE Project(Menzel, et al., 2001)and RAD(CSLU, 2003)。語(yǔ)音識(shí)別的準(zhǔn)確性將有望改善。

在自動(dòng)語(yǔ)音識(shí)別產(chǎn)品中的幾種語(yǔ)音識(shí)別方式中,隱馬爾可夫模型(HMM)被認(rèn)為是最主要的算法,并且被證明在處理大詞匯語(yǔ)音時(shí)是最高效的(Ehsani & Knodt, 1998)。詳細(xì)說(shuō)明隱馬爾可夫模型如何工作超出了本文的范圍,但可以在任何關(guān)于語(yǔ)言處理的文章中找到。其中最好的是Jurafsky & Martin(2000)and Hosom, Cole, and Fanty(2003)。簡(jiǎn)而言之,隱馬爾可夫模型計(jì)算輸入接收信號(hào)和包含于一個(gè)擁有數(shù)以百計(jì)的本土音素錄音的數(shù)據(jù)庫(kù)的匹配可能性(Hinks, 2003, p.5)。也就是說(shuō),一臺(tái)基于隱馬爾可夫模型的語(yǔ)音識(shí)別器可以計(jì)算輸入一個(gè)發(fā)音的音素可以和一個(gè)基于概率論相應(yīng)的模型達(dá)到的達(dá)到的接近度。高性能就意味著優(yōu)良的發(fā)音,低性能就意味著劣質(zhì)的發(fā)音(Larocca, et al., 1991)。

雖然語(yǔ)音識(shí)別已被普遍用于商業(yè)聽(tīng)寫(xiě)和獲取特殊需要等目的,近年來(lái),語(yǔ)言學(xué)習(xí)的市場(chǎng)占有率急劇增加(Aist, 1999;Eskenazi, 1999;Hinks, 2003)。早期的基于自動(dòng)語(yǔ)音識(shí)別的軟件程序采用基于模板的識(shí)別系統(tǒng),其使用動(dòng)態(tài)規(guī)劃執(zhí)行模式匹配或其他時(shí)間規(guī)范化技術(shù)(Dalby & Kewley-Port,1999).這些程序包括Talk to Me(Auralog, 1995), the Tell Me More Series(Auralog, 2000), Triple-Play Plus(Mackey & Choi, 1998), New Dynamic English(DynEd, 1997), English Discoveries(Edusoft, 1998), and See it, Hear It, SAY IT!(CPI, 1997)。這些程序的大多數(shù)都不會(huì)提供任何反饋給超出簡(jiǎn)單說(shuō)明的發(fā)音準(zhǔn)確率,這個(gè)基于最接近模式匹配說(shuō)明是由用戶(hù)提出書(shū)面對(duì)話選擇的。學(xué)習(xí)者不會(huì)被告之他們發(fā)音的準(zhǔn)確率。特別是內(nèi)里,(2002年)評(píng)論例如Talk to Me和Tell Me More等作品中的波形圖,因?yàn)樗麄兤诖∪A的買(mǎi)家,而不會(huì)提供有意義的反饋給用戶(hù)。Talk to Me 2002年的版本已經(jīng)包含了更多Hinks(2003)的特性,比如,信任對(duì)于學(xué)習(xí)者來(lái)說(shuō)是非常有用的: ★ 一個(gè)視覺(jué)信號(hào)可以讓學(xué)習(xí)者把他們的語(yǔ)調(diào)同模型揚(yáng)聲器發(fā)出的語(yǔ)調(diào)進(jìn)行對(duì)比。★ 學(xué)習(xí)者發(fā)音的準(zhǔn)確度通常以數(shù)字7來(lái)度量(越高越好)★ 那些發(fā)音失真的詞語(yǔ)會(huì)被識(shí)別出來(lái)并被明顯地標(biāo)注。

Improved speech recognition method

for intelligent robot

2、Overview of speech recognition Speech recognition has received more and more attention recently due to the important theoretical meaning and practical value [5 ].Up to now, most speech recognition is based on conventional linear system theory, such as Hidden Markov Model(HMM)and Dynamic Time Warping(DTW).With the deep study of speech recognition, it is found that speech signal is a complex nonlinear process.If the study of speech recognition wants to break through, nonlinear-system theory method must be introduced to it.Recently, with the developmentof nonlinea-system theories such as artificial neural networks(ANN), chaos and fractal, it is possible to apply these theories to speech recognition.Therefore, the study of this paper is based on ANN and chaos and fractal theories are introduced to process speech recognition.Speech recognition is divided into two ways that are speaker dependent and speaker independent.Speaker dependent refers to the pronunciation model trained by a single person, the identification rate of the training person?sorders is high, while others’orders is in low identification rate or can’t be recognized.Speaker independent refers to the pronunciation model trained by persons of different age, sex and region, it can identify a group of persons’orders.Generally, speaker independent system ismorewidely used, since the user is not required to conduct the training.So extraction of speaker independent features from the speech signal is the fundamental problem of speaker recognition system.Speech recognition can be viewed as a pattern recognition task, which includes training and recognition.Generally, speech signal can be viewed as a time sequence and characterized by the powerful hidden Markov model(HMM).Through the feature extraction, the speech signal is transferred into feature vectors and act asobservations.In the training procedure, these observationswill feed to estimate the model parameters of HMM.These parameters include probability density function for the observations and their corresponding states, transition probability between the states, etc.After the parameter estimation, the trained models can be used for recognition task.The input observations will be recognized as the resulted words and the accuracy can be evaluated.Thewhole process is illustrated in Fig.1.Fig.1 Block diagram of speech recognition system Theory andmethod Extraction of speaker independent features from the speech signal is the fundamental problem of speaker recognition system.The standard methodology for solving this problem uses Linear Predictive Cepstral Coefficients(LPCC)and Mel-Frequency Cepstral Co-efficient(MFCC).Both these methods are linear procedures based on the assumption that speaker features have properties caused by the vocal tract resonances.These features form the basic spectral structure of the speech signal.However, the non-linear information in speech signals is not easily extracted by the present feature extraction methodologies.So we use fractal dimension to measure non2linear speech turbulence.This paper investigates and implements speaker identification system using both traditional LPCC and non-linear multiscaled fractal dimension feature extraction.3.1 L inear Predictive Cepstral Coefficients

Linear prediction coefficient(LPC)is a parameter setwhich is obtained when we do linear prediction analysis of speech.It is about some correlation characteristics between adjacent speech samples.Linear prediction analysis is based on the following basic concepts.That is, a speech sample can be estimated approximately by the linear combination of some past speech samples.According to the minimal square sum principle of difference between real speech sample in certain analysis frame short-time and predictive sample, the only group ofprediction coefficients can be determined.LPC coefficient can be used to estimate speech signal cepstrum.This is a special processing method in analysis of speech signal short-time cepstrum.System function of channelmodel is obtained by linear prediction analysis as follow.Where p represents linear prediction order, ak,(k=1,2,…,p)represent sprediction coefficient, Impulse response is represented by h(n).Suppose cepstrum of h(n)is represented by ,then(1)can be expanded as(2).The cepstrum coefficient calculated in the way of(5)is called LPCC, n represents LPCC order.When we extract LPCC parameter before, we should carry on speech signal pre-emphasis, framing processing, windowingprocessing and endpoints detection etc., so the endpoint detection of Chinese command word“Forward”is shown in Fig.2, next, the speech waveform ofChinese command word“Forward”and LPCC parameter waveform after Endpoint detection is shown in Fig.3.3.2 Speech Fractal Dimension Computation

Fractal dimension is a quantitative value from the scale relation on the meaning of fractal, and also a measuring on self-similarity of its structure.The fractal measuring is fractal dimension[6-7].From the viewpoint of measuring, fractal dimension is extended from integer to fraction, breaking the limitof the general to pology set dimension being integer Fractal dimension,fraction mostly, is dimension extension in Euclidean geometry.There are many definitions on fractal dimension, eg.,similar dimension, Hausdoff dimension, inforation dimension, correlation dimension, capability imension, box-counting dimension etc., where,Hausdoff dimension is oldest and also most important, for any sets, it is defined as[3].Where, M£(F)denotes how many unit £ needed to cover subset F.In thispaper, the Box-Counting dimension(DB)of ,F, is obtained by partitioning the plane with squares grids of side £, and the numberof squares that intersect the plane(N(£))and is defined as[8].The speech waveform of Chinese command word“Forward”and fractal dimension waveform after Endpoint detection is shown in Fig.4.3.3 Improved feature extractions method Considering the respective advantages on expressing speech signal of LPCC and fractal dimension,we mix both to be the feature signal, that is, fractal dimension denotes the self2similarity, periodicity and randomness of speech time wave shape, meanwhile LPCC feature is good for speech quality and high on identification rate.Due to ANN′s nonlinearity, self-adaptability, robust and self-learning such obvious advantages, its good classification and input2output reflection ability are suitable to resolve speech recognition problem.Due to the number of ANN input nodes being fixed, therefore time regularization is carried out to the feature parameter before inputted to the neural network[9].In our experiments, LPCC and fractal dimension of each sample are need to get through the network of time regularization separately, LPCC is 4-frame data(LPCC1,LPCC2,LPCC3,LPCC4, each frame parameter is 14-D), fractal dimension is regularized to be12-frame data(FD1,FD2,…,FD12, each frame parameter is 1-D), so that the feature vector of each sample has 4*14+1*12=68-D, the order is, the first 56 dimensions are LPCC, the rest 12 dimensions are fractal dimensions.Thus, such mixed feature parameter can show speech linear and nonlinear characteristics as well.Architectures and Features of ASR ASR is a cutting edge technology that allows a computer or even a hand-held PDA(Myers, 2000)to identify words that are read aloud or spoken into any sound-recording device.The ultimate purpose of ASR technology is to allow 100% accuracy with all words that are intelligibly spoken by any person regardless of vocabulary size, background noise, or speaker variables(CSLU, 2002).However, most ASR engineers admit that the current accuracy level for a large vocabulary unit of speech(e.g., the sentence)remains less than 90%.Dragon's Naturally Speaking or IBM's ViaVoice, for example, show a baseline recognition accuracy of only 60% to 80%, depending upon accent, background noise, type of utterance, etc.(Ehsani & Knodt, 1998).More expensive systems that are reported to outperform these two are Subarashii(Bernstein, et al., 1999), EduSpeak(Franco, et al., 2001), Phonepass(Hinks, 2001), ISLE Project(Menzel, et al., 2001)and RAD(CSLU, 2003).ASR accuracy is expected to improve.Among several types of speech recognizers used in ASR products, both implemented and proposed, the Hidden Markov Model(HMM)is one of the most dominant algorithms and has proven to be an effective method of dealing with large units of speech(Ehsani & Knodt, 1998).Detailed descriptions of how the HHM model works go beyond the scope of this paper and can be found in any text concerned with language processing;among the best are Jurafsky & Martin(2000)and Hosom, Cole, and Fanty(2003).Put simply, HMM computes the probable match between the input it receives and phonemes contained in a database of hundreds of native speaker recordings(Hinks, 2003, p.5).That is, a speech recognizer based on HMM computes how close the phonemes of a spoken input are to a corresponding model, based on probability theory.High likelihood represents good pronunciation;low likelihood represents poor pronunciation(Larocca, et al., 1991).While ASR has been commonly used for such purposes as business dictation and special needs accessibility, its market presence for language learning has increased dramatically in recent years(Aist, 1999;Eskenazi, 1999;Hinks, 2003).Early ASR-based software programs adopted template-based recognition systems which perform pattern matching using dynamic programming or other time normalization techniques(Dalby & Kewley-Port, 1999).These programs include Talk to Me(Auralog, 1995), the Tell Me More Series(Auralog, 2000), Triple-Play Plus(Mackey & Choi, 1998), New Dynamic English(DynEd, 1997), English Discoveries(Edusoft, 1998), and See it, Hear It, SAY IT!(CPI, 1997).Most of these programs do not provide any feedback on pronunciation accuracy beyond simply indicating which written dialogue choice the user has made, based on the closest pattern match.Learners are not told the accuracy of their pronunciation.In particular, Neri, et al.(2002)criticizes the graphical wave forms presented in products such as Talk to Me and Tell Me More because they look flashy to buyers, but do not give meaningful feedback to users.The 2000 version of Talk to Me has incorporated more of the features that Hinks(2003), for example, believes are useful to learners: ★ A visual signal allows learners to compare their intonation to that of the model speaker.★ The learners' pronunciation accuracy is scored on a scale of seven(the higher the better).Words whose pronunciation fails to be recognized are highlighted

第三篇:機(jī)器人及機(jī)器人傳感技術(shù)(畢業(yè)論文外文翻譯).

機(jī)器人和機(jī)器人傳感器 介紹

工業(yè)機(jī)器人以及它的運(yùn)行是本文的主題。工業(yè)機(jī)器人是應(yīng)用于制造環(huán)境下 以提高生產(chǎn)率的一種工具。它可用于承擔(dān)常規(guī)的、冗長(zhǎng)乏味的裝配線工作, 或執(zhí) 行那些對(duì)工人也許有危害的工作。例如, 在第一代工業(yè)機(jī)器人中, 曾有一臺(tái)被用 于更換核電廠的核燃料棒。從事這項(xiàng)工作的工人可能會(huì)暴露在有害量的放射線 下。工業(yè)機(jī)器人也能夠在裝配線上操作——安裝小型元件, 例如將電子元件安裝 在線路板上。為此, 工人可以從這種冗長(zhǎng)乏味任務(wù)的常規(guī)操作中解放出來(lái)。通過(guò) 編程的機(jī)器人還能去掉炸彈的雷管、為殘疾者服務(wù)以及在我們社會(huì)的眾多應(yīng)用中 發(fā)揮作用。

機(jī)器人可被看作將臂端執(zhí)行工具、傳感器以及 /或夾爪移動(dòng)到某個(gè)預(yù)定位 置的一臺(tái)機(jī)器。當(dāng)機(jī)器人到達(dá)該位置,它將執(zhí)行某個(gè)任務(wù)。該任務(wù)可能是焊接、密封、機(jī)械裝載、機(jī)械卸載,或許多裝配工作。除了編程以及打開(kāi)和關(guān)閉系統(tǒng)之 外,一般情況下,均不需要人們的參與就能完成這類(lèi)工作。

機(jī)器人專(zhuān)業(yè)術(shù)語(yǔ)

機(jī)器人是一臺(tái)可再編程的多功能機(jī)械手,它可通過(guò)可編程運(yùn)動(dòng)移動(dòng)零件、物料、工具或特殊裝置以執(zhí)行某種不同任務(wù)。由這項(xiàng)定義可導(dǎo)致下面段落中被闡 述的其他定義,它們?yōu)闄C(jī)器人系統(tǒng)提供了完整的寫(xiě)照。

預(yù)編程位置是機(jī)器人為了完成工作必須遵循和通過(guò)的途徑。在這些位置 的某點(diǎn),機(jī)器人會(huì)停下來(lái)并執(zhí)行某種操作,例如裝配零件,噴漆或焊接。這些預(yù) 編程位置被存儲(chǔ)在機(jī)器人的記憶裝置中供以后繼續(xù)操作時(shí)使用。此外, 當(dāng)工作的 要求發(fā)生變化時(shí), 不僅其他編程數(shù)據(jù)而且這些預(yù)編程位置均可作修改。因此, 正 由于這種編程的特點(diǎn), 一臺(tái)工業(yè)機(jī)器人與一臺(tái)可存儲(chǔ)數(shù)據(jù)、以及可回憶及編輯的 計(jì)算機(jī)十分相似。

機(jī)械手是機(jī)器人的手臂, 它允許機(jī)器人俯仰、伸縮和轉(zhuǎn)動(dòng)。這種動(dòng)作是由 機(jī)械手的軸所提供的, 機(jī)械手的軸又稱(chēng)為機(jī)器人的自由度。一臺(tái)機(jī)器人可以具有 3至 16根軸。在本人的后面部分,自由度這個(gè)術(shù)語(yǔ)總與一臺(tái)機(jī)器人軸的數(shù)目相

關(guān)聯(lián)。

工具及夾爪并非屬于機(jī)器人系統(tǒng)的本身, 它們是裝在機(jī)器人手臂端部的附 件。有了與機(jī)器人手臂端部相連接的這些附件,機(jī)器人就可以提起零件、點(diǎn)焊、噴漆、弧焊、鉆孔、去毛刺,還可以根據(jù)所提要求指向各種類(lèi)型的任務(wù)。

機(jī)器人系統(tǒng)還可以控制操作機(jī)器人的工作單元。機(jī)器人工作單元是一種總 體環(huán)境, 在該環(huán)境下機(jī)器人必須執(zhí)行賦予它的任務(wù)。該單元可包容控制器、機(jī)器 人的機(jī)械手、工作臺(tái)、安全裝置,或輸送機(jī)。機(jī)器人開(kāi)展工作所需要的所有設(shè)備 均被包括在這個(gè)工作單元中。此外, 來(lái)自外界裝置的信號(hào)能夠與機(jī)器人進(jìn)行交流, 這樣就可以告訴機(jī)器人什么時(shí)候它該裝配零件、撿起零件或?qū)⒘慵兜捷斔蜋C(jī)。基本部件

機(jī)器人系統(tǒng)具有 3個(gè)基本部件:機(jī)械手、控制器及動(dòng)力源。在某些機(jī)器人 系統(tǒng)中可以看到第 4個(gè)部件,端部執(zhí)行件,有關(guān)這些部件將在下面小節(jié)描述。機(jī)械手

機(jī)械手承擔(dān)機(jī)器人系統(tǒng)的體力工作,它由兩部分組成:機(jī)械部分及被連接 的附屬物。機(jī)械手還有一個(gè)與附屬物相連的底座。

機(jī)械手的底座通常被固定在工作領(lǐng)域的地面。有時(shí), 底座也可以移動(dòng)。在 該情況下, 底座被安裝到導(dǎo)軌上, 這樣該機(jī)械手就可以從一處移動(dòng)到另一處。例 如,一臺(tái)機(jī)器人可以為幾臺(tái)機(jī)床工作,為每臺(tái)機(jī)床裝載和卸載。

正如前面所述,附屬物從機(jī)器人的底座伸出。該附屬物是機(jī)器人的手臂。它既可以是一個(gè)直線型的可動(dòng)臂,也可以是一個(gè)鉸接臂。鉸接臂也稱(chēng)關(guān)節(jié)臂。機(jī)器人機(jī)械手的附屬物可為機(jī)械手提供各種運(yùn)動(dòng)軸。這些軸與固定底座相 連接, 而該底座又被緊固到機(jī)架上。這個(gè)機(jī)架能確保該機(jī)械手被維持在某個(gè)位置 上。

在手臂的端部連接著一個(gè)手腕。該手腕由附加軸及手腕法蘭組成, 有了該 手腕法蘭,機(jī)器人用戶(hù)就可以根據(jù)不同的工作在手腕上安裝不同的工具。

機(jī)械手的軸允許機(jī)械手在一定區(qū)域內(nèi)執(zhí)行工作。如前所述, 該區(qū)域被稱(chēng)為 機(jī)器人的工作單元, 它的尺度與機(jī)械手的尺寸相對(duì)應(yīng)。當(dāng)機(jī)器人的物理尺寸增大

時(shí),工作單元的尺寸必然也隨之增加。

機(jī)械手的運(yùn)動(dòng)由驅(qū)動(dòng)器, 或驅(qū)動(dòng)系統(tǒng)所控制。驅(qū)動(dòng)器或驅(qū)動(dòng)系統(tǒng)允許各根 軸在工作單元內(nèi)運(yùn)動(dòng), 驅(qū)動(dòng)系統(tǒng)可利用電力的、液壓的或氣壓動(dòng)力。驅(qū)動(dòng)系統(tǒng)發(fā) 出的能量由各種機(jī)械驅(qū)動(dòng)裝置轉(zhuǎn)換成機(jī)械動(dòng)力。這些驅(qū)動(dòng)裝置通過(guò)機(jī)械聯(lián)動(dòng)機(jī)構(gòu) 接合在一起。這些聯(lián)動(dòng)機(jī)構(gòu)依次驅(qū)動(dòng)機(jī)器人的不同軸。機(jī)械聯(lián)動(dòng)機(jī)構(gòu)由鏈輪機(jī)構(gòu), 齒輪機(jī)構(gòu)及滾珠絲杠所組成。

控制器

機(jī)器人系統(tǒng)的控制器是運(yùn)行的心臟。控制器存儲(chǔ)著為以后回憶所用的預(yù)編 程信息,控制著外圍設(shè)備,它還與廠內(nèi)計(jì)算機(jī)進(jìn)行交流以使生產(chǎn)不斷更新。控制器用于控制機(jī)器人機(jī)械手運(yùn)動(dòng)以及工作單元中的外圍部件。工作人員 可以利用手遞示教盒將機(jī)械手的動(dòng)作編程進(jìn)入控制器。這種信息可被存儲(chǔ)在控制 器的記憶裝置中以便以后回憶使用。控制器存儲(chǔ)著機(jī)器人系統(tǒng)的所有程序數(shù)據(jù)。它可以存儲(chǔ)幾種不同的程序,并且它們中任一程序均可被編輯。

也可要求控制器與工作單元中外圍設(shè)備進(jìn)行交流。例如, 控制器具有一根 輸入線, 該輸入線可識(shí)別某項(xiàng)機(jī)械加工什么時(shí)候完成。當(dāng)該機(jī)械循環(huán)完成時(shí), 輸 入線被接通,它會(huì)吩咐控制器讓機(jī)械手到位以便機(jī)械手能夾起以加工完的零件。接著, 該機(jī)械手再撿起一根新的零件并將它安放到機(jī)床上, 然后, 控制器向該機(jī) 床發(fā)出信號(hào)讓它開(kāi)始運(yùn)轉(zhuǎn)。

控制器可由機(jī)械操縱的磁鼓構(gòu)成, 這些鼓按工作發(fā)生的先后次序操作。這 類(lèi)控制器用于非常簡(jiǎn)單的機(jī)器人系統(tǒng)。在大多數(shù)機(jī)器人系統(tǒng)中見(jiàn)到的控制器是很 復(fù)雜的裝置, 它們體現(xiàn)了現(xiàn)代化的電子科學(xué)。換言之, 它們由微信息處理器操縱。這些

微信息處理器不是 8位、16位就是 32位的信息處理器。這種功能使控制器 的運(yùn)行具有非常好的柔性。

控制器可通過(guò)通訊線路發(fā)出電子信號(hào), 發(fā)出能與機(jī)械手各軸線進(jìn)行溝通的 電信號(hào), 機(jī)器人機(jī)械手與控制器之間這種雙向交流可使系統(tǒng)的位置及運(yùn)行維持在 不斷修正及更新得狀態(tài)下,控制器還可以控制安裝在機(jī)器人手腕端部的任意工 具。

控制器還有與工廠中不同計(jì)算機(jī)開(kāi)展交流的任務(wù), 這個(gè)通訊網(wǎng)絡(luò)可使機(jī)器 人成為計(jì)算機(jī)輔助制造(CAM 系統(tǒng)的一部分。

根據(jù)上述基本定義, 機(jī)器人是一臺(tái)可再編程序的多功能機(jī)械手。所以, 控 制器必須包含某種形式的記憶存儲(chǔ)器, 以微信息處理器為基礎(chǔ)的系統(tǒng)常與固態(tài)記 憶裝置連同運(yùn)行。這些記憶裝置可以是磁泡、隨機(jī)存取記憶裝置、軟塑料磁盤(pán)或 磁帶。每種記憶存儲(chǔ)裝置均可存儲(chǔ)編程信息以便以后回憶使用。

動(dòng)力源

動(dòng)力源是向控制器及機(jī)械手供給動(dòng)力得裝置,有兩類(lèi)動(dòng)力供給機(jī)器人系 統(tǒng)。一類(lèi)動(dòng)力是供控制器運(yùn)行的交流點(diǎn)動(dòng)力, 另一類(lèi)被用于驅(qū)動(dòng)機(jī)械手各軸。例 如, 若機(jī)器人的機(jī)械手由液壓或氣壓裝置控制, 則控制信號(hào)被發(fā)送到這些裝置才 能使機(jī)器人運(yùn)動(dòng)。

每個(gè)機(jī)器人系統(tǒng)均需要?jiǎng)恿?lái)驅(qū)動(dòng)機(jī)械手,這種動(dòng)力既可由液壓動(dòng)力源、氣壓動(dòng)力源, 也可以由電力動(dòng)力源提供, 這些動(dòng)力源是機(jī)器人工作單元總的部件 及設(shè)備中的一部分。

當(dāng)液壓動(dòng)力源與及機(jī)器人機(jī)械手底座相連接, 液壓源產(chǎn)生液壓流體, 這些 流體輸送到機(jī)械手各控制元件,于是,使軸繞機(jī)器人底座旋轉(zhuǎn)。

壓力空氣被輸送到機(jī)械手, 使軸沿軌道作直線運(yùn)動(dòng), 也可將這種氣動(dòng)源連 接到鉆床, 它可為鉆頭的旋轉(zhuǎn)提供動(dòng)力。一般情況下, 可從工廠得供給站獲取氣 動(dòng)源并做調(diào)整,然后將它輸入機(jī)器人機(jī)械手的軸。

電動(dòng)機(jī)可以是交流式的, 也可以是直流式的。控制器發(fā)出的脈沖信號(hào)被發(fā) 送到機(jī)械手得電機(jī)。這些脈沖為電機(jī)提供必要的指令信息以使機(jī)械手在機(jī)器人底 座上旋轉(zhuǎn)。

用于機(jī)械手軸的三種動(dòng)力系統(tǒng)任一種均需要使用反饋監(jiān)督系統(tǒng), 這種系統(tǒng) 會(huì)不斷地將每個(gè)軸位置數(shù)據(jù)反饋給控制器。

每種機(jī)器人系統(tǒng)不僅需要?jiǎng)恿?lái)開(kāi)動(dòng)機(jī)械手的軸, 還需要?jiǎng)恿?lái)驅(qū)動(dòng)控制 器,這種動(dòng)力可由制造環(huán)境的動(dòng)力源提供。

端部執(zhí)行件

在大部分機(jī)器人應(yīng)用的場(chǎng)合見(jiàn)到的端部執(zhí)行件均是機(jī)械手手腕法蘭相連 接的一個(gè)裝置, 端部執(zhí)行件可應(yīng)用于生產(chǎn)領(lǐng)域中許多不同場(chǎng)合, 例如, 它可用于 撿起零件, 用于焊接, 或用于噴漆, 端部執(zhí)行件為機(jī)器人系統(tǒng)提供了機(jī)器人運(yùn)行 時(shí)必須的柔性。

通常所設(shè)計(jì)得端部執(zhí)行件可滿足機(jī)器人用戶(hù)的需要。這些部件可由機(jī)器人 制造商或機(jī)器人系統(tǒng)的物主制造。

端部執(zhí)行件事機(jī)器人系統(tǒng)中唯一可將一種工作變成另一種工作的部件, 例 如, 即日起可與噴水割機(jī)相連, 它在汽車(chē)生產(chǎn)線上被用于切割板邊。也可要求機(jī) 器人將零件安放到磁盤(pán)中, 在這簡(jiǎn)單的過(guò)程中, 改變了機(jī)器人端部執(zhí)行件, 該機(jī) 器人就可以用于其它應(yīng)用場(chǎng)合, 端部執(zhí)行件得變更以及機(jī)器人的再編程序可使該 系統(tǒng)具有很高的柔性。

機(jī)器人傳感器

盡管機(jī)器人有巨大的能力,但很多時(shí)候卻比不過(guò)沒(méi)有經(jīng)過(guò)一點(diǎn)訓(xùn)練的工 人。例如, 工人們能夠發(fā)現(xiàn)零件掉在地上或發(fā)現(xiàn)進(jìn)料機(jī)上沒(méi)有零件, 但沒(méi)有了傳 感器, 機(jī)器人就得不到這些信息, 及時(shí)使用最尖端的傳感器, 機(jī)器人也比不上一 個(gè)經(jīng)驗(yàn)豐富的

工人, 因此, 一個(gè)好的機(jī)器人系統(tǒng)的設(shè)計(jì)需要使用許多傳感器與機(jī) 器人控制器相接,使其盡可能接近操作工人得感知能力。

機(jī)器人技術(shù)最經(jīng)常使用的傳感器分為接觸式的與非接觸式的。接觸式傳感 器可以進(jìn)一步分為觸覺(jué)傳感器、力和扭矩傳感器。觸覺(jué)或接觸傳感器可以測(cè)出受 動(dòng)器端與其他物體間的實(shí)際接觸, 微型開(kāi)關(guān)就是一個(gè)簡(jiǎn)單的觸覺(jué)傳感器, 當(dāng)機(jī)器 人得受動(dòng)氣端與其他物體接觸時(shí), 傳感器是機(jī)器人停止工作, 避免物體間的碰撞, 告訴機(jī)器人已到達(dá)目標(biāo);或者在檢測(cè)時(shí)用來(lái)測(cè)量物體尺寸。力和扭矩傳感器位于 機(jī)器人得抓手與手腕的最后一個(gè)關(guān)節(jié)之間, 或者放在機(jī)械手得承載部件上, 測(cè)量 反力與力矩。力和扭矩傳感器有壓電傳感器和裝在柔性部件上的應(yīng)變儀等。非接觸傳感器包括接近傳感器、視覺(jué)傳感器、聲敏元件及范圍探測(cè)器等。接近傳感器和標(biāo)示傳感器附近的物體。例如, 可以用渦流傳感器精確地保持與鋼 板之間的固定的距離。最簡(jiǎn)單的機(jī)器人接近傳感器包括一個(gè)發(fā)光二極管發(fā)射機(jī)和

一個(gè)光敏二極管接收器, 接收反射面移近時(shí)的反射光線, 這種傳感器的主要缺點(diǎn) 是移近物對(duì)光線的反射率會(huì)影響接收信號(hào)。其他得接近傳感器使用的是與電容和 電感相關(guān)的原理。

視覺(jué)傳感系統(tǒng)十分復(fù)雜, 基于電視攝像或激光掃描的工作原理。攝像信號(hào) 經(jīng)過(guò)硬件預(yù)處理, 以 30幀至 60幀每秒的速度輸入計(jì)算機(jī)。計(jì)算機(jī)分析數(shù)據(jù)并提 取所需的信息,例如,物體是否存在以及物體的特征、位置、操作方向,或者檢 測(cè)元件的組裝及產(chǎn)品是否完成。

聲敏元件用來(lái)感應(yīng)并解釋聲波, 從基本的聲波探測(cè)到人們連續(xù)講話的逐字 識(shí)別, 各種聲敏元件的復(fù)雜程序不等, 除了人機(jī)語(yǔ)音交流外, 機(jī)器人還可以使用 聲敏元件控制弧焊, 聽(tīng)到碰撞或倒塌的聲音時(shí)阻止機(jī)器人的運(yùn)動(dòng), 預(yù)測(cè)將要發(fā)生 的機(jī)械破損及檢測(cè)物體內(nèi)部缺陷。

還有一種非接觸系統(tǒng)使用投影儀和成像設(shè)備獲取物體的表面形狀信息或 距離信息。

傳感器有靜態(tài)探測(cè)與閉環(huán)探測(cè)兩種使用方法。當(dāng)機(jī)器人系統(tǒng)的探測(cè)和操作 動(dòng)作交替進(jìn)行時(shí), 通常就要使用傳感器, 也就是說(shuō)探測(cè)時(shí)機(jī)器人不操作, 操作時(shí) 與傳感器無(wú)關(guān), 這種方法被稱(chēng)為靜態(tài)探測(cè), 使用這種方法, 視覺(jué)傳感器先尋找被 捕捉物體的位置與方向,然后機(jī)器人徑直朝那個(gè)地點(diǎn)移動(dòng)。

相反, 閉式探測(cè)的機(jī)器人在操作運(yùn)動(dòng)中, 始終受傳感器的控制, 多數(shù)視覺(jué)傳感器 都采用閉環(huán)模式, 它們隨時(shí)監(jiān)測(cè)機(jī)器人的實(shí)際位置與理想位置間的偏差, 并驅(qū)動(dòng) 機(jī)器人修正這一偏差。在閉環(huán)探測(cè)中,即使物體在運(yùn)動(dòng),例如在傳送帶上,機(jī)器 人也能抓住它并把它送到預(yù)定位置。

Robots and robot sensor Introduction Industrial robot and its operation is the subject of this article.Industrial robots are used in manufacturing environment as a tool to increase productivity.It can be used to undertake routine, tedious assembly line work, or the implementation of those workers may be hazardous work.For example, in the first generation of industrial robots, there were a nuclear power plant is for the replacement of fuel rods.Workers engaged in this work may be exposed to harmful amounts of radiation in the next.Industrial robots can operate in the assembly line-to install small-scale components, such as electronic components mounted on circuit board.To this end, workers from the tedious task of this routine operation freed.The robot can be programmed to remove the bomb detonators for the disabled in our community services and play a role in many applications.Robot arm can be seen as the end of the implementation of tools, sensors, and / or jaws to move to a predetermined position of a machine.When the robot reaches the position, it will perform a task.The task may be welded, sealed, mechanical loading, mechanical unloading, or many assembly work.In addition to programming, and open

and close the system, the general, not require the participation of people will be able to complete such work.Robotics Glossary Robot is a reprogrammable multifunctional manipulator that can be programmable motion moving parts, materials, tools or special devices to perform a different task.By the following paragraphs of this definition may lead to other definitions were described, which provides a complete system for the robot itself.Location is pre-programmed robot must follow in order to complete the work and the way through.A point in these locations, the robot will stop and perform some operations, such as assembling parts, painting or welding.These pre-programmed robot position is stored in the memory device to continue operation for later use.In addition, when job requirements change, the only other programming data and these can be modified pre-programmed locations.Therefore, precisely because of the characteristics of this program, an industrial robot and one can store data, and can recall and edit the computer is very similar.Robot is a robot arm, which allows the robot pitch, stretching and rotating.This action is provided by the robot axis, mechanical axis, also known as robot hand of freedom.A robot can have 3-16 axis.In my later, the term degrees of freedom and a total number of robot axes associated.Tools and not within the robot gripper itself, which is mounted on the robot arm end attachment.With the end of the robot arm connected to these attachments, the robot can lift parts, spot welding, painting, welding, drilling, deburring, the request can also point to various types of tasks.Robot system can also control the operation of the robot's work unit.Robotic work cell is a general environment in the environment, the robot must perform the tasks entrusted to it.The unit can accommodate the controller, the robot manipulator, working platforms, safety devices, or conveyor.Robot to carry out all the equipment needed for the work are included in this unit of work.In addition, the signal from the external device to communicate with the robot, so that you can tell the robot when it is part of the assembly, pick up the parts or the parts to the unloading conveyor.Basic components Robotic system has three basic components: the robot, controller and power source.In some robot system can be seen in the first four components, end of the implementation of parts, these parts will be described in the following sections.Manipulator Robot bear robot system manual work, which consists of two parts: the mechanical parts and is connected to appendages.There is also a robot appendage connected to the base.The base of the robot work area is usually fixed in the ground.Sometimes, the base can be moved.In that case, the base is installed to the rail so that the robot can move from one place to another.For example, a robot can work for a few machine tools, loading and unloading for each machine.As mentioned earlier, the appendage extending from the base of the robot.The attachment is a robot arm.It can be a linear movable arm, it can be a hinged arm.Articulated arm, also known as articulated arm.Adjunct manipulator can provide a variety of sports-axis robot.The shaft is connected with the fixed base, which base has been tightened to the rack.This rack can ensure that the robot is in a position to maintain.Ends of the arm connected to a wrist.The axis of the wrist and wrist flange by additional components, with the flange of the wrist, the robot according to the different users can work in different tools installed on the wrist.Axis allows the robot manipulator in a certain area implementation.As mentioned earlier, the region known as the robot work unit, and its scale and size of the corresponding robot.When the robot's physical size increases, the size of the unit of work must also increase.Mechanical hand movements by the driver, or drive system control.Drive or shaft drive system allows the movement in the work unit, drive system using electric, hydraulic or pneumatic power.Drive the energy emitted from a variety of mechanical drive into mechanical power.These drives are joined together by a mechanical linkage.The linkage in turn drive the various robot axes.Mechanical linkage from the sprocket body, composed of gears and ball screws.Controller Robot controller is running in the heart.After the memory controller stores used for the pre-programmed information, control peripherals, to communicate it with the factory computer to make the production of constantly updated.Controller used to control the manipulator motion and the outer parts of the work unit.Staff can use the box to teach hand-delivery actions programmed into the robot controller.This information can be stored in the controller's memory for later recall using the device.Robot controller stores all program data.It can store several different programs, and they can be in any program to be edited.May also request the work unit controller and peripheral devices to communicate.For example, the controller has an input line, the input line can be identified when a mechanical process to complete.When the mechanical cycle is complete, the input line is connected, it will place orders for the controller to the robot manipulator to pick up the processing of finished parts.Then, the robot then picked up a new part and it is placed into the machine, then, the controller send a signal to the machine to get it started operation.Mechanical manipulation of the drum controller can be constituted, the work place by order of the drum operation.The controller for a very simple robot system.Seen in most of the robot system controller is a very complex device, which reflects the modern electronic science.In other words, they are manipulated by the micro-information processor.These micro-information processors instead of 8 bits, 16 bits of information that is 32-bit processors.This feature allows the controller to run with very good flexibility.Controller can send electronic signals through the communication line to issue with the mechanical hand signals to communicate with the axis of the robot manipulator and controller, this two-way communication between the location and operation makes the system constantly revised and updated to maintain the state may The controller can also control the robot wrist in the end installed any tools.There are different controller computers and factory to carry out the task of communication, the communication network will enable the robot to become computer-aided manufacturing(CAM part of the system.According to the basic definition, the robot is a multi-function can be re-programmed robot.Therefore, the controller must include some form of memory storage, to micro-processor-based information systems are often associated with solid-state

memory device with the operation.These memory devices can be magnetic bubbles, random access memory device, soft plastic disk or tape.Each memory storage device programming information can be stored for later recall using the.Power source Source of power to the controller and the robot was powered device, there are two types of robot power supply system.Controller for a class of power is power to run the exchange point, and the other is used to drive the robot axes.For example, if the robot manipulator controlled by a hydraulic or pneumatic device, the control signal is sent to these devices to make the robot movement.Each robot systems require power to drive the robot, this source of power either by hydraulic power, pneumatic power source, power source can also be provided by electricity, the power source is a unit of work the robot parts and equipment in the total part.When the hydraulic power source with and connected to the base manipulator, hydraulic pressure source to produce the hydraulic fluid, the fluid transport of the control components to the robot, so the robot base rotated around the axis.Pressure air is fed to the robot, the axis along the track in a straight line, the source can also be connected to such a pneumatic drill, it can provide power for the drill rotation.Under normal circumstances, can be obtained from the factory air supply station for the source and make adjustments, and then enter it in the axis manipulator.AC motor type can also be a DC-style.Controller sends out pulses of the signal was sent to the robot motors.These pulses provide the necessary instructions for the motor information to enable the robot in the robot base rotation.The three-axis robot for power systems either require the use of feedback control systems, this system will continue to position data for each axis of feedback to the controller.Each robot system not only need power to start the robot axis, also need power to drive the controller, this dynamic manufacturing environment, the power source can provide.Implementation of end pieces In most applications where the robot to see implementation of end pieces are connected to the robot wrist flange of a device, end pieces can be used in the production areas of the

implementation of many different occasions, for example, it can be used to pick up parts, used for welding, or for painting, the implementation of parts for the robot end system provides the flexibility of the robot must run.Usually designed to meet the end of the implementation of pieces of the robot users.These components can robot manufacturer or owner of manufacturing robot system.The implementation of the system end the only thing the robot can be a work into another working parts, for example, are available from the cutting machine is connected with the water, which is used in the automotive production line cutting edge.May also request the robot placed the parts to disk, in this simple process, change the end of the implementation of parts of the robot, the robot can be used for other applications, the implementation of end pieces may change, and then the robot programmed allows the system to have high flexibility.Robot Sensor Although the robot has great ability, but often than not with a little practice, but the workers.For example, workers can find parts that fall to the ground or no parts feeder, but not the sensor, the robot will not get this information in a timely manner using the most sophisticated sensors, the robot is smaller than an experienced worker Therefore, a good robot system design requires many sensor and robot controller using the phase, it was as close as possible operative awareness.The most frequently used robotics sensors into contact with the non-contact.Contact sensors can be further divided into tactile sensors, force and torque sensors.Tactile or contact sensors can be measured by the drive-side and the actual contact between other objects, micro-switch is a simple tactile sensor, the robot may be angry when the client contact with other objects, the sensor is the robot to stop work and avoid objects between collisions, tell the robot has reached the goal;or when used to measure the size of objects detected.Force and torque sensors in the robot gripper and wrist was the last joint, or between the parts on the robot to carry a measured reaction force and torque.Force and torque sensors are mounted on the flexible piezoelectric sensors and strain gauges on the parts.Non-contact sensors include proximity sensors, vision sensors, sound detectors, sensitive components and scope.Proximity sensors and labeling of objects near the

sensor.For example, eddy current sensor can be used to accurately maintain a fixed distance between the plates.The most simple robot proximity sensors including a light-emitting diode and a photodiode receiver transmitter, receiver reflector closer to the reflection of light, the main disadvantage of this sensor is closer to the object reflectance of light will affect the received signal.The other was close to the sensor using a capacitance and inductance associated with the principle.Visual sensing system is very complex, based on the TV camera or laser scanner works.Video signal through the hardware pretreatment to 30-60 per second input into the computer.Computer analysis of the data and extract the required information, for example, the existence of objects and object features, location, operating direction, or components of the assembly and product testing is complete.Sound sensitive devices used to sense and interpret sound waves, sound waves detected from the basic people recognize continuous speech, word for word, all kinds of sound ranging from sensitive components of the complex procedures, in addition to human-computer voice communication, the robot can also use the sound sensitive devices control of arc welding, I heard the sound of collision or collapse of the movement to stop the robot to predict the mechanical damage will occur and the detection of objects within the defects.There is also a non-contact systems for projector and imaging the surface of the object shape information or distance information.Static detection and closed-loop sensor probe used in two ways.When the detection and operation of the robot system moves alternately, it is usually necessary to use sensors that detect when the robot is not operating, the operation has nothing to do with the sensors, this method is called static detection, using this method, visual Find the sensor captured the first position and orientation of objects, and then the robot moves straight to the site.In contrast, closed manipulation and motion detection robot, always under the control of sensors, vision sensors are used the majority of closed-loop mode, which monitor the robot's actual position at any time and the deviation between the ideal position, and drive the robot fix this error.In the closed-loop detection, even if the object

in motion, for example, the conveyor belt, the robot can grasp it and send it to the desired location.

第四篇:外文翻譯——使用遠(yuǎn)程網(wǎng)絡(luò)控制系統(tǒng)的三軸機(jī)器人

使用遠(yuǎn)程網(wǎng)絡(luò)控制系統(tǒng)的三軸機(jī)器人

Min-Chie Chiu, Tian-Syung Lan, Ho-Chih Cheng 自動(dòng)控制工程系,中州技術(shù)學(xué)院,彰化,臺(tái)灣,中國(guó) 宇達(dá)商業(yè)科技大學(xué)資訊管理系,苗栗縣,臺(tái)灣,中國(guó)

摘要 對(duì)于石油行業(yè),在有發(fā)生瓦斯爆炸危險(xiǎn)的工作區(qū)使用防爆設(shè)備以降低風(fēng)險(xiǎn),如空氣驅(qū)動(dòng)裝置,這對(duì)于避免爆炸是必不可少的。此外,使用一個(gè)可視化的監(jiān)測(cè)系統(tǒng)和網(wǎng)絡(luò)的遠(yuǎn)程操作的機(jī)器人,以達(dá)到節(jié)省人力的目的。然而,要克服昂貴的人力成本的缺點(diǎn)和提高防爆區(qū)域的安全,提出了使用遠(yuǎn)程網(wǎng)絡(luò)控制一個(gè)三軸機(jī)器人的系統(tǒng)控制。在本文中,三軸的機(jī)器人可以經(jīng)由USB協(xié)議被在線監(jiān)視。此外,它也可以通過(guò)點(diǎn)擊客戶(hù)端PC上的VB接口的命令,利用TCP/ IP協(xié)議遠(yuǎn)程操作。因此,遠(yuǎn)程控制三軸機(jī)器人不僅能在嚴(yán)重和危險(xiǎn)的情況下為人們工作,而且還可以降低人力成本。

關(guān)鍵詞:三軸機(jī)器人,遠(yuǎn)程網(wǎng)絡(luò)監(jiān)控

1.簡(jiǎn)介

在現(xiàn)代世界發(fā)展的新趨勢(shì),機(jī)器人開(kāi)始感覺(jué)到他們的存在。為了提高這個(gè)過(guò)程,并減少不必要的人力,各種工業(yè)機(jī)器人已被廣泛開(kāi)發(fā)[1]。傳統(tǒng)的機(jī)器人已被禁止在爆炸危險(xiǎn)區(qū)使用電機(jī)驅(qū)動(dòng)。為了克服這個(gè)缺點(diǎn),需要一個(gè)新的設(shè)計(jì)要求的防爆電機(jī)[2]。但是,它是非常昂貴的。因此,在石油工業(yè)中為避免引起爆炸的火花,空氣驅(qū)動(dòng)裝置對(duì)于防止爆炸是必要的[3,4]。目前,各種機(jī)器人已被提出,但是他們?nèi)狈h(yuǎn)程機(jī)器人和用戶(hù)之間的交互性。為了在危險(xiǎn)的工作區(qū)手動(dòng)操作機(jī)器人執(zhí)行特定的工作,一個(gè)空氣系統(tǒng)驅(qū)動(dòng)的遠(yuǎn)程控制機(jī)器人是非常重要的。在本文中,三軸機(jī)器人配備一個(gè)網(wǎng)絡(luò)攝像頭,它可以通過(guò)USB協(xié)議進(jìn)行在線監(jiān)視。顯然,遠(yuǎn)程控制三軸機(jī)器人不僅可以為人們?cè)趧?dòng)蕩和危險(xiǎn)的情況下工作,還可以降低人力成本。因此,一個(gè)基于PC的控制系統(tǒng)使用VB在一個(gè)服務(wù)器電腦和客戶(hù)端PC通過(guò)RS232/RS485協(xié)議建立接口。2.基于PC的遠(yuǎn)程控制系統(tǒng)

用于減少人力的工業(yè)加工的自動(dòng)化系統(tǒng)是隨處可見(jiàn)。正如圖1中,使用兩個(gè)VB經(jīng)由網(wǎng)絡(luò)接口(一個(gè)服務(wù)器中的PC和另一個(gè)在客戶(hù)端中的PC)和Web攝像頭已建立的遠(yuǎn)程三軸機(jī)器人系統(tǒng)。正如在圖2中所示,施加兩種系統(tǒng)模量(7060D和7520)中的遠(yuǎn)程監(jiān)視/控制系統(tǒng)。由于RS232協(xié)議傳送的距離超過(guò)十五米時(shí)信號(hào)會(huì)產(chǎn)生嚴(yán)重的衰減,一個(gè)新建議的協(xié)議(RS485)在長(zhǎng)距離傳輸時(shí)信號(hào)衰減的影響是微不足道的[5,6]。在這里,7520是一個(gè)從RS232—RS485協(xié)議的轉(zhuǎn)換設(shè)備[7,8]。通過(guò)RS232/RS485轉(zhuǎn)換器從服務(wù)器PC發(fā)出的命令將被發(fā)送到其他模量。電磁控制閥的硬件如圖3所示用于操縱的活塞運(yùn)動(dòng)(即機(jī)器人臂的運(yùn)動(dòng))使用一個(gè)7060D模塊的DI/O(數(shù)字輸入和輸出),被發(fā)射的信號(hào)從一個(gè)服務(wù)器PC通過(guò)一個(gè)7520A模塊(從RS232,RS285協(xié)議轉(zhuǎn)換器)。正如圖4所示,電磁控制閥7060模塊通過(guò)使用一個(gè)VB接口的服務(wù)器PC上一個(gè)RS232/RS485協(xié)議觸發(fā)數(shù)字信號(hào)輸出。控制閥的位置狀態(tài)會(huì)從控制閥(a0, a1, b0, b1, c0, and c1)傳送的磁信號(hào)被7060模塊的數(shù)字輸入信號(hào)檢測(cè)到。

圖1 遠(yuǎn)程三軸機(jī)器人系統(tǒng)

圖2 兩種模塊

圖3 三個(gè)電磁控制閥相對(duì)于活塞的圖表

圖4 導(dǎo)線連接的模塊

正如在圖5和圖6中所示,用戶(hù)可以通過(guò)點(diǎn)擊的移動(dòng)按鈕通過(guò)VB 服務(wù)器PC和客戶(hù)端PC上的對(duì)話相關(guān)的電磁控制閥操縱機(jī)器人的手臂。此外,當(dāng)前位置活塞A,B和C監(jiān)測(cè)的燈光A +,A-,B+,B-,C+,和C-可以在服務(wù)器和客戶(hù)端PC的VB對(duì)話框中控制。

氣動(dòng)機(jī)械臂在被執(zhí)行之前,系統(tǒng)在系統(tǒng)的測(cè)試圖的基礎(chǔ)上進(jìn)行確認(rèn)。正如在圖7中所示,三個(gè)電磁控制閥的信號(hào)的操縱過(guò)程中將被重新檢查。此外,也可以通過(guò)單擊命令按鈕,在PC界面上VB的對(duì)話框中觸發(fā)相關(guān)的活塞將燈光A +,A-,B+,B-,C+,和C-作出回應(yīng)。

圖5 VB對(duì)話框(PC服務(wù)器)手動(dòng)移動(dòng)機(jī)器人的手臂 要監(jiān)視在線的真實(shí)運(yùn)動(dòng)的機(jī)器人手臂,需要安裝一個(gè)網(wǎng)絡(luò)攝像頭。機(jī)器人手臂的圖像將被捕獲,并通過(guò)一個(gè)USB協(xié)議發(fā)送回至服務(wù)器電腦。此外,圖像將通過(guò)TCP / IP協(xié)議被傳輸?shù)娇蛻?hù)端電腦。

圖6 VB對(duì)話框(PC客戶(hù)端)手動(dòng)移動(dòng)機(jī)器人的手臂

3.結(jié)果與討論 3.1 結(jié)果

正如在圖5和圖6上所示,使用兩個(gè)VB的接口(一個(gè)中的服務(wù)器的PC和客戶(hù)端中的pc),通過(guò)網(wǎng)絡(luò)與Web攝像頭的一個(gè)三軸機(jī)器人的遠(yuǎn)程控制已經(jīng)成功建立。在客戶(hù)端電腦可以被操縱,TCP/ IP協(xié)議的基礎(chǔ)上,應(yīng)先連接電腦的服務(wù)器和在客戶(hù)端的電腦對(duì)話中輸入IP地址和運(yùn)輸端口號(hào)。要保持的機(jī)器人臂的特定移動(dòng),6個(gè)按鈕(x軸正向,x軸向后,y軸轉(zhuǎn)發(fā),y軸向后,z軸的正向,和z軸向后,)對(duì)應(yīng)于服務(wù)器電腦VB對(duì)話框的上選擇機(jī)器人的動(dòng)作。

3.2 討論

用戶(hù)可以通過(guò)服務(wù)器PC和客戶(hù)端PC操縱機(jī)器人手臂。VB界面所示的機(jī)器人手臂(活塞的位置的電磁信號(hào))的狀態(tài)將通過(guò)TCP / IP協(xié)議被發(fā)送到PC客戶(hù)端。點(diǎn)擊在客戶(hù)端PC的命令,也將被發(fā)送到服務(wù)器的PC導(dǎo)致的電磁控制閥的動(dòng)作,從而通過(guò)切換空氣路徑控制所述活塞的活塞運(yùn)動(dòng)。同時(shí),活塞的位置信號(hào)將被轉(zhuǎn)換成的燈光A +,A-,B+,B-,C+,和C-顯示在兩個(gè)VB在PC服務(wù)器和客戶(hù)端的對(duì)話框上。此外,機(jī)器人手臂的圖像通過(guò)USB協(xié)議將被捕獲并發(fā)送到服務(wù)器PC。通過(guò)TCP / IP協(xié)議圖像將從PC服務(wù)器傳輸?shù)絇C客戶(hù)端。4.結(jié)論

這證明該遠(yuǎn)程控制系統(tǒng)控制的空氣驅(qū)動(dòng)三軸機(jī)器人手臂節(jié)省了人力,避免了爆炸,并提高了工業(yè)生產(chǎn)過(guò)程。傳統(tǒng)的機(jī)器人已被禁止在危險(xiǎn)爆炸區(qū)使用電機(jī)驅(qū)動(dòng)。此外,另一種用電氣馬達(dá)防爆的設(shè)計(jì)是昂貴的。因此,為了節(jié)省人力,避免發(fā)生爆炸的危險(xiǎn),同時(shí),降低成本費(fèi)用,使用空氣驅(qū)動(dòng)的機(jī)器人手臂是必要的。空氣驅(qū)動(dòng)的機(jī)器人在無(wú)火花化學(xué)過(guò)程中,并使用VB對(duì)話可以安全地和遠(yuǎn)程操縱,它通過(guò)RS232/RS485協(xié)議,利用電磁控制閥,以觸發(fā)一個(gè)空氣驅(qū)動(dòng)的活塞。此外,通過(guò)經(jīng)由USB協(xié)議的監(jiān)控機(jī)器人臂運(yùn)動(dòng)的圖像發(fā)送到服務(wù)器電腦。此外,機(jī)器人運(yùn)動(dòng)的圖像將通過(guò)TCP / IP協(xié)議被轉(zhuǎn)發(fā)到客戶(hù)端電腦機(jī)。在客戶(hù)端PC的用戶(hù)也可以在客戶(hù)端PC使用VB界面通過(guò)TCP / IP協(xié)議操縱機(jī)器人運(yùn)動(dòng)。

因此,應(yīng)當(dāng)指出,如果在危險(xiǎn)的工作環(huán)境中進(jìn)行操作時(shí),使用遠(yuǎn)程網(wǎng)絡(luò)監(jiān)視/控制系統(tǒng)控制空氣驅(qū)動(dòng)的機(jī)械臂,工人/植物和工業(yè)過(guò)程的安全和效率將得到改善。

5.致謝

作者感謝財(cái)政支持這個(gè)項(xiàng)目(CCUT-AI-96-AC02)。筆者感謝匿名審稿人友情提供的建議和意見(jiàn),以改進(jìn)這項(xiàng)工作。

6.參考文獻(xiàn)

[1] M.C.Chiu, L.J.Yeh and Y.C.Lin, “The Design and Application of a Robot ic Vacuum Cleaner,”Journal of Information & Optimization Sciences, Vol.30, No.1, 2009, pp.39-62.[2] H.A.Akeel and A.J.Malarz, “Electric Robot for Use in a Hazardous Location,” United States Patent 4984745, 2002.[3] Users’ Guidebook for Explosion Protection Electric Facility, Guildline, RIIS-TR-94-2, National Institute of Industrial Safety, 1994.[4] M.-R.Lin and C.-Y.Chen, “Applications of Inherently Safer Design on Industrial Processes,” Chemical Engineering, Vol.47, No.1, 2000, pp.41-51.[5] M.C.Chiu, “An Automatic Thermal Control on Green-house Using Network Remote Controlling System,” Journal of Applied Sciences , Vol.10, No.17, 2010, pp.1944-1950.[6] M.C.Chiu,“A Multi-Function Aquarium Equipped with Automatic Thermal Control/Fodder-Feeding/Water Treat-ment Using Network Remote Controlling System,” Information Technology Journal , Vol.9, No.7, 2010, pp.1458-1466.[7] M.C.Chiu, “The Study of Remote Network Monitoring and Controlling System on Thermal Procedure,” in: Y.-L.Chang-Hwa and C.-H.Chai-Ialley, Eds., The Proceedings of 2008 Academic Joint Venture, 2008.[8] M.C.Chiu, H.C.Cheng and M.J.Hsu, “The Study of Remote Network Monitoring and Controlling System on Gas-Driven Robotic,” The Proceedings of Mechanics, Light, and Electricity, San-Johns Technical University, Taipei, 2008.A Three-Axis Robot Using a Remote Network Control System

Min-Chie Chiu, Tian-Syung Lan, Ho-Chih Cheng Department of Automatic Control Engineering, Chungchou Institute of Technology,Changhua, Taiwan, China

Department of Information Management, Yu Da University, Miaoli, Taiwan, China

E-mail : tslan888@yahoo.com.tw

Received August 7 , 2010;revised October 8 , 2010;accepted October 18 , 2010

Abstract For the petroleum industry, to reduce the risk of a gas explosion in dangerous working areas, the use of explosion-proof equipment such as air-driven devices which are free from explosions becomes essential.Moreover, for the purpose of saving manpower, a remote operation using a robot via a visual monitoring system and a network is used.However, to overcome the drawback of costly manpower and to improve safety in explosion-prone zones, a three-axis robot using a remote network control system is proposed.In this paper, the three-axis robot can be monitored on line via the USB protocol.Furthermore, it also can be remotely manipulated via the TCP/IP protocol by clicking the command of the VB interface on the client pc.Consequently, the remote-control three-axis robot can not only work for people in severe and dangerous circumstances but also can reduce the cost of manpower.Keywords: Three-Axis Robot, Remote Network Monitoring

1.Introduction

As new trends in the modern world evolve, robots begin to make their presence felt.In order to improve the process and reduce unnecessary manpower, various industrial robots have been widely developed [1].Traditional robot driven by electrical motor used in a dangerous explosion zone has been prohibited.To overcome the drawback, a new design of explosion proof for an electrical motor is required [2].However, it is extremely expensive.Therefore, to avoid explosions caused by sparks in the petroleum industry, an air-driven device which is explosion free is necessary [3,4].Currently, various robots have been presented;however, they lack remote interactivity between the robot and the user.In order to manually operate a robot to execute a specific job in a dangerous working area, a remote-control robot system driven by air is vital.In this paper, the three-axis robot equipped with a web camera, which can be monitored online via the USB protocol, is established.Obviously, the remote-control three-axis robot not only can work for people in volatile and dangerous circumstances but also can lower the cost of manpower.Consequently, a PC-based control system is constructed using a VB interface in both a sever pc and a client pc via the RS232/RS485 protocol.2.A PC-Based Remote Controlling System

Automation systems used in industrial processing to reduce manpower are seen everywhere.As indicated in Figure 1, a remote three-axis robot system using two VB interfaces(one in the sever pc and the other in the client pc)via a network and a web camera has been established.As indicated in Figure 2, two kinds of system modulus(7060D and 7520)are applied in the remote monitoring/control system.Because of the serious decay of the signal for a RS232 protocol traveling over a distance of fifteen meters, a new protocol(RS485)in which the effect of signal decay is trivial for long-distance transportation is recommended [5,6].Here, the 7520 module is a protocol transfer device from RS232 to RS485 [7,8].A command emitted from the sever pc will be sent to other modulus via the RS232/RS485 converter.The hardware of the electromagnetic control valve shown in Figure 3 is used to manipulate the piston motion(i.e., the motion of the robotic arm)using a 7060D module’s DI/O(digital input and output)that is emitted from a sever pc via a 7520A module(a protocol translator from RS232 to RS285).As indicated in Figure 4 , the electromagnetic control valve will be triggered by the digital output signal of the 7060 module via a RS232/RS485 protocol using a VB interface on the sever pc.The status of the piston positions will be also detected by the digital input signal of the 7060 module transmitted from the magnetic signals(a0, a1, b0, b1, c0, and c1)of the pistons.Figure 1.A remote three-axis robot system.Figure 2.Two kinds of modulus.Figure 3.The diagram of the pistons with respect to three electromagnetic control valves.As indicated in Figures 5 and 6 , the user can manipulate the robot’s arm by clicking the movement button to actuate the related electromagnetic control valve via the VB dialogue on both the pc sever and the pc client.Moreover, the current position of pistons A, B, and C will be monitored by the lights of A+, A–, B+, B–, C+, and C– in the VB dialogues in pc server and client.Before the gas robotic arm is performed, the system confirmation is carried based on a system testing diagram.As indicated in Figure 7 , the signals of three electromagnetic control valves will be rechecked during the manipulating process.Besides, the related piston triggered by clicking the command button in the VB dialogue will also be responded to the lights of A+, A–, B+, B–, C+, and C– in pc’s interface.To monitor the real motion of robotic arm online, a web camera is installed.The image of the robotic arm will be caught and sent back to the sever pc via a USB protocol.Moreover, the image will be transmitted to the client pc via the TCP/IP protocol.Figure 4.The wire connections of the modulus.3.Results and Discussion

3.1.Results

As indicated in Figures 5 and 6 , the remote control of a three-axis robot using two VB interfaces(one in the sever pc and the other in the client pc)via a network and a web camera has been established successfully.Before the client pc can be manipulated, based on the TCP/IP protocol, the sever pc shall be connected first by inputting the IP address and transp ort number in the client’s pc dialogue.To keep the

Figure 5.The manual movement of the robot’s arm on the VB dialogue(pc sever).Figure 6.The manual movement of the robot’s arm on the VB dialogue(pc client).Figure 7.A system testing diagram for a remote-controlled three-axis robotic arm.robotic arm in a specific motion, six buttons(x-axis forward, x-axis backward, y-axis forwarding, y-axis backward, z-axis forward, and z-axis backward,)of the robot’s motion will be selected on the VB dialogue of the sever pc.3.2.Discussion

The user can manipulate the robotic arm in both the pc sever and the pc client.The status of the robotic arm(the electromagnetic signal of the piston’s location)shown in the VB interface will be transmitted to the pc client via a TCP/IP protocol.The command clicked in the pc client will be also transmitted to the pc sever to actuate the electromagnetic control valve so as to control the piston motion of the piston by switching the air path.Meanwhile, the signals of pistons’position will be translated as the lights of A+, A–, B+, B–, C+, and C– shown in two VB dialogues in pc server and client.Moreover, the image of the robotic arm will be caught and sent to the pc sever using the USB protocol.The image will be then transmitted from the pc sever to the pc client via the TCP/IP.4.Conclusions

It has been shown that a remote control system dealing with an air-driven three-axis robotic arm reduces manpower, avoids the explosion, and improves the industrial process.Traditional robot driven by electrical motor used in a dangerous explosion zone has been prohibited.Moreover, an alternative design of explosion proof for an electrical motor is expensive.Therefore, in order to save manpower, avoid the danger for explosion simultaneously, and to cost down the f ee of machine, an air-driven robotic arm is compulsory.The air-driven robot provides no spark in the chemical process and can be safely and remotely manipulated using a VB dialogue to trigger an air-driven piston, which is actuated by an electromagnetic control valve via the RS232/RS485.Additionally, a visual monitoring of the robotic arm is performed by transmitting the image of the robotic motion to the sever pc via the USB protocol.Moreover, the image of the robotic motion will be forwarded to the client pc via the TCP/IP protocol.The user at the client pc can also manipulate the robotic motion using a VB interface at the client pc via the TCP/IP protocol.Consequently, it is noted that both the safety of workers/plant and the efficiency of the industrial process will be improved if an air-driven robotic arm in conjunction with a remote network monitoring/control system is applied when operating in a dangerous work environment.5.Acknowledgements

The authors acknowledge the financial support of the Project(CCUT-AI-96-AC02).The author would like to thank the anonymous referees who kindly provided the suggestions and comments to improve this work.6.References

[1] M.C.Chiu, L.J.Yeh and Y.C.Lin, “The Design and Application of a Robot ic Vacuum Cleaner,” Journal of Information & Optimization Sciences, Vol.30, No.1, 2009, pp.39-62.[2] H.A.Akeel and A.J.Malarz, “Electric Robot for Use in a Hazardous Location,” United States Patent 4984745, 2002.[3] Users’ Guidebook for Explosion Protection Electric Facility, Guildline, RIIS-TR-94-2, National Institute of Industrial Safety, 1994.[4] M.-R.Lin and C.-Y.Chen, “Applications of Inherently Safer Design on Industrial Processes,” Chemical Engineering, Vol.47, No.1, 2000, pp.41-51.[5] M.C.Chiu, “An Automatic Thermal Control on Green-house Using Network Remote Controlling System,” Journal of Applied Sciences , Vol.10, No.17, 2010, pp.1944-1950.[6] M.C.Chiu,“A Multi-Function Aquarium Equipped with Automatic Thermal Control/Fodder-Feeding/Water Treat-ment Using Network Remote Controlling System,” Information Technology Journal , Vol.9, No.7, 2010, pp.1458-1466.[7] M.C.Chiu, “The Study of Remote Network Monitoring and Controlling System on Thermal Procedure,” in: Y.-L.Chang-Hwa and C.-H.Chai-Ialley, Eds., The Proceedings of 2008 Academic Joint Venture, 2008.[8] M.C.Chiu, H.C.Cheng and M.J.Hsu, “The Study of Remote Network Monitoring and Controlling System on Gas-Driven Robotic,” The Proceedings of Mechanics, Light, and Electricity, San-Johns Technical University, Taipei, 2008.

第五篇:高性能的PLC控制步進(jìn)電機(jī)在機(jī)器人機(jī)械手外文翻譯

高性能的PLC控制步進(jìn)電機(jī)在機(jī)器人機(jī)械手

摘要:在最近幾年,一個(gè)完整的多軸數(shù)字控制系統(tǒng)已經(jīng)研制成功。本文

介紹了一個(gè)用工業(yè)可編程邏輯控制(PLC)來(lái)控制五軸轉(zhuǎn)子位置,方向和速度,從而減少電路元件的數(shù)量,降低成本和提高可靠性。一些實(shí)驗(yàn)結(jié)果表明是由控制器的高性能和功能得來(lái)的。關(guān)鍵詞:

PLC,機(jī)器人和步進(jìn)電機(jī)。

1、簡(jiǎn)介

運(yùn)動(dòng)控制的主要目的是設(shè)計(jì)控制系統(tǒng)能實(shí)現(xiàn)真正的自動(dòng)運(yùn)動(dòng)機(jī)器。這種性能必須達(dá)到優(yōu)化機(jī)械,即生產(chǎn)力實(shí)現(xiàn)更高的工作速度,盡量減少能源要求,減少了使機(jī)械磨損的因素(1)。一個(gè)完全數(shù)字化的體系來(lái)說(shuō)通過(guò)對(duì)基于總線控制系統(tǒng)的最大的靈活性應(yīng)用系統(tǒng)提供高性能的伺服控制是必需的。在大多數(shù)情況下,PLC是一種固態(tài)裝置,設(shè)計(jì)工作在嘈雜的工業(yè)環(huán)境并執(zhí)行所有的邏輯功能,早先就實(shí)現(xiàn)了對(duì)鼓機(jī)電繼電器開(kāi)關(guān),機(jī)械定時(shí)器和計(jì)數(shù)器的使用(2)。步進(jìn)電機(jī),通常用于微型電子計(jì)算機(jī),現(xiàn)已廣泛應(yīng)用于機(jī)器人(3)。在本文中,我提出了各軸包含一個(gè)由plc控制的步進(jìn)電機(jī)的五檔速度控制軸機(jī)器人。(SLC 150)

2、可編程控制器

PLC,像一臺(tái)電腦,采用了微處理器芯片進(jìn)行處理和存儲(chǔ)芯片來(lái)存儲(chǔ)方案。PLC的基本結(jié)構(gòu)如圖1所示,輸入設(shè)備是監(jiān)控機(jī)器或被控制的過(guò)程的傳感器。這些傳感器的狀態(tài)(ON或OFF)被輸送到PLC控制器。取決于這些傳感器輸入狀態(tài)的PLC的輸出可能切換到活力馬達(dá),繼電器,閥門(mén)等....,來(lái)控制機(jī)器或過(guò)程。SLC150的PLC[2]有10個(gè)輸入,編號(hào)從1到10的,然后再?gòu)?0數(shù)到1的IO當(dāng)作 IO1的輸入。SLCI50有12個(gè)輸出編號(hào)從11至16,和111至116。

3、機(jī)器人的描述、圖2顯示了一個(gè)典型的機(jī)器人(4)。它由一英寸上有8-32螺紋孔的12英寸至14英寸大小的底板和炮塔——一個(gè)周?chē)鋫淞藗魉蛶У男D(zhuǎn)平臺(tái)(它的每一英寸的中心有8-32螺紋孔)。這些孔配合安裝在機(jī)器人的手臂和手腕馬達(dá)的相對(duì)于其中心的不同地;,炮塔鉗,可連接炮塔和炮塔軸;炮塔裝載,可連接底板唇,覆蓋炮塔馬達(dá),和支撐炮塔軸和炮塔。炮塔軸是用來(lái)保留炮塔和炮塔內(nèi)的炮架集合,炮塔軸承(有兩個(gè))的

呈遞擔(dān)保裝入舉行炮塔軸,推力 軸承安裝在炮塔的軸上,以適應(yīng) 機(jī)器人的重量,提供平穩(wěn)和旋轉(zhuǎn) 炮塔,推力墊圈安裝在炮塔軸接口的推力軸承的安裝和炮塔鉗總成(他們是在任的推力軸承一面放置),炮塔齒輪(有二分之一254?0tha屆一,步進(jìn)電機(jī)(五電機(jī)),數(shù)字編碼器,40齒)臂環(huán)節(jié),是一個(gè)機(jī)器人手爪手,提供下巴 位置和動(dòng)態(tài)壓縮力信息到控制器。

下載外文翻譯--使用語(yǔ)音識(shí)別技術(shù)控制的焊接機(jī)器人工作單元-精品word格式文檔
下載外文翻譯--使用語(yǔ)音識(shí)別技術(shù)控制的焊接機(jī)器人工作單元-精品.doc
將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶(hù)自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    主站蜘蛛池模板: 色五月婷婷成人网| 无码午夜福利片在线观看| 综合自拍亚洲综合图区高清| 人妻少妇精品视中文字幕国语| 毛片大全真人在线| 久久在精品线影院精品国产| 国产山东熟女48嗷嗷叫| а√天堂资源中文在线官网| 亚洲日韩看片成人无码| 国产毛片欧美毛片久久久| 18精品久久久无码午夜福利| 国产精品无码一本二本三本色| 又嫩又硬又黄又爽的视频| 亚洲熟妇丰满xxxxx国语| 久久婷婷六月综合色液啪| 国产午夜人做人免费视频中文| 男人狂桶女人出白浆免费视频| 美女张开腿黄网站免费| 又硬又粗又大一区二区三区视频| 久久永久免费人妻精品下载| 国产精品.xx视频.xxtv| 久久国产超碰女女av| 色综合久久网| 日日摸处处碰夜夜爽| 亚洲av无码国产精品色软件| 亚洲精品成人无码中文毛片| 超级碰碰| 亚洲熟女av乱码在线观看漫画| 日日噜狠狠噜天天噜av| 成年性午夜无码免费视频| 99999久久久久久亚洲| 日韩国产亚洲一区二区三区| av无码人妻一区二区三区牛牛| 国产成人亚洲精品无码蜜芽| 国精产品一区一区三区免费视频| 99久久人妻无码精品系列蜜桃| 色yeye香蕉凹凸视频在线观看| 成年无码aⅴ片在线观看| 亚洲国产精品热久久| 6080yyy午夜理论片中无码| 在线黑人抽搐潮喷|