久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

外文翻譯——使用遠程網絡控制系統的三軸機器人

時間:2019-05-13 22:09:59下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《外文翻譯——使用遠程網絡控制系統的三軸機器人》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《外文翻譯——使用遠程網絡控制系統的三軸機器人》。

第一篇:外文翻譯——使用遠程網絡控制系統的三軸機器人

使用遠程網絡控制系統的三軸機器人

Min-Chie Chiu, Tian-Syung Lan, Ho-Chih Cheng 自動控制工程系,中州技術學院,彰化,臺灣,中國 宇達商業科技大學資訊管理系,苗栗縣,臺灣,中國

摘要 對于石油行業,在有發生瓦斯爆炸危險的工作區使用防爆設備以降低風險,如空氣驅動裝置,這對于避免爆炸是必不可少的。此外,使用一個可視化的監測系統和網絡的遠程操作的機器人,以達到節省人力的目的。然而,要克服昂貴的人力成本的缺點和提高防爆區域的安全,提出了使用遠程網絡控制一個三軸機器人的系統控制。在本文中,三軸的機器人可以經由USB協議被在線監視。此外,它也可以通過點擊客戶端PC上的VB接口的命令,利用TCP/ IP協議遠程操作。因此,遠程控制三軸機器人不僅能在嚴重和危險的情況下為人們工作,而且還可以降低人力成本。

關鍵詞:三軸機器人,遠程網絡監控

1.簡介

在現代世界發展的新趨勢,機器人開始感覺到他們的存在。為了提高這個過程,并減少不必要的人力,各種工業機器人已被廣泛開發[1]。傳統的機器人已被禁止在爆炸危險區使用電機驅動。為了克服這個缺點,需要一個新的設計要求的防爆電機[2]。但是,它是非常昂貴的。因此,在石油工業中為避免引起爆炸的火花,空氣驅動裝置對于防止爆炸是必要的[3,4]。目前,各種機器人已被提出,但是他們缺乏遠程機器人和用戶之間的交互性。為了在危險的工作區手動操作機器人執行特定的工作,一個空氣系統驅動的遠程控制機器人是非常重要的。在本文中,三軸機器人配備一個網絡攝像頭,它可以通過USB協議進行在線監視。顯然,遠程控制三軸機器人不僅可以為人們在動蕩和危險的情況下工作,還可以降低人力成本。因此,一個基于PC的控制系統使用VB在一個服務器電腦和客戶端PC通過RS232/RS485協議建立接口。2.基于PC的遠程控制系統

用于減少人力的工業加工的自動化系統是隨處可見。正如圖1中,使用兩個VB經由網絡接口(一個服務器中的PC和另一個在客戶端中的PC)和Web攝像頭已建立的遠程三軸機器人系統。正如在圖2中所示,施加兩種系統模量(7060D和7520)中的遠程監視/控制系統。由于RS232協議傳送的距離超過十五米時信號會產生嚴重的衰減,一個新建議的協議(RS485)在長距離傳輸時信號衰減的影響是微不足道的[5,6]。在這里,7520是一個從RS232—RS485協議的轉換設備[7,8]。通過RS232/RS485轉換器從服務器PC發出的命令將被發送到其他模量。電磁控制閥的硬件如圖3所示用于操縱的活塞運動(即機器人臂的運動)使用一個7060D模塊的DI/O(數字輸入和輸出),被發射的信號從一個服務器PC通過一個7520A模塊(從RS232,RS285協議轉換器)。正如圖4所示,電磁控制閥7060模塊通過使用一個VB接口的服務器PC上一個RS232/RS485協議觸發數字信號輸出。控制閥的位置狀態會從控制閥(a0, a1, b0, b1, c0, and c1)傳送的磁信號被7060模塊的數字輸入信號檢測到。

圖1 遠程三軸機器人系統

圖2 兩種模塊

圖3 三個電磁控制閥相對于活塞的圖表

圖4 導線連接的模塊

正如在圖5和圖6中所示,用戶可以通過點擊的移動按鈕通過VB 服務器PC和客戶端PC上的對話相關的電磁控制閥操縱機器人的手臂。此外,當前位置活塞A,B和C監測的燈光A +,A-,B+,B-,C+,和C-可以在服務器和客戶端PC的VB對話框中控制。

氣動機械臂在被執行之前,系統在系統的測試圖的基礎上進行確認。正如在圖7中所示,三個電磁控制閥的信號的操縱過程中將被重新檢查。此外,也可以通過單擊命令按鈕,在PC界面上VB的對話框中觸發相關的活塞將燈光A +,A-,B+,B-,C+,和C-作出回應。

圖5 VB對話框(PC服務器)手動移動機器人的手臂 要監視在線的真實運動的機器人手臂,需要安裝一個網絡攝像頭。機器人手臂的圖像將被捕獲,并通過一個USB協議發送回至服務器電腦。此外,圖像將通過TCP / IP協議被傳輸到客戶端電腦。

圖6 VB對話框(PC客戶端)手動移動機器人的手臂

3.結果與討論 3.1 結果

正如在圖5和圖6上所示,使用兩個VB的接口(一個中的服務器的PC和客戶端中的pc),通過網絡與Web攝像頭的一個三軸機器人的遠程控制已經成功建立。在客戶端電腦可以被操縱,TCP/ IP協議的基礎上,應先連接電腦的服務器和在客戶端的電腦對話中輸入IP地址和運輸端口號。要保持的機器人臂的特定移動,6個按鈕(x軸正向,x軸向后,y軸轉發,y軸向后,z軸的正向,和z軸向后,)對應于服務器電腦VB對話框的上選擇機器人的動作。

3.2 討論

用戶可以通過服務器PC和客戶端PC操縱機器人手臂。VB界面所示的機器人手臂(活塞的位置的電磁信號)的狀態將通過TCP / IP協議被發送到PC客戶端。點擊在客戶端PC的命令,也將被發送到服務器的PC導致的電磁控制閥的動作,從而通過切換空氣路徑控制所述活塞的活塞運動。同時,活塞的位置信號將被轉換成的燈光A +,A-,B+,B-,C+,和C-顯示在兩個VB在PC服務器和客戶端的對話框上。此外,機器人手臂的圖像通過USB協議將被捕獲并發送到服務器PC。通過TCP / IP協議圖像將從PC服務器傳輸到PC客戶端。4.結論

這證明該遠程控制系統控制的空氣驅動三軸機器人手臂節省了人力,避免了爆炸,并提高了工業生產過程。傳統的機器人已被禁止在危險爆炸區使用電機驅動。此外,另一種用電氣馬達防爆的設計是昂貴的。因此,為了節省人力,避免發生爆炸的危險,同時,降低成本費用,使用空氣驅動的機器人手臂是必要的。空氣驅動的機器人在無火花化學過程中,并使用VB對話可以安全地和遠程操縱,它通過RS232/RS485協議,利用電磁控制閥,以觸發一個空氣驅動的活塞。此外,通過經由USB協議的監控機器人臂運動的圖像發送到服務器電腦。此外,機器人運動的圖像將通過TCP / IP協議被轉發到客戶端電腦機。在客戶端PC的用戶也可以在客戶端PC使用VB界面通過TCP / IP協議操縱機器人運動。

因此,應當指出,如果在危險的工作環境中進行操作時,使用遠程網絡監視/控制系統控制空氣驅動的機械臂,工人/植物和工業過程的安全和效率將得到改善。

5.致謝

作者感謝財政支持這個項目(CCUT-AI-96-AC02)。筆者感謝匿名審稿人友情提供的建議和意見,以改進這項工作。

6.參考文獻

[1] M.C.Chiu, L.J.Yeh and Y.C.Lin, “The Design and Application of a Robot ic Vacuum Cleaner,”Journal of Information & Optimization Sciences, Vol.30, No.1, 2009, pp.39-62.[2] H.A.Akeel and A.J.Malarz, “Electric Robot for Use in a Hazardous Location,” United States Patent 4984745, 2002.[3] Users’ Guidebook for Explosion Protection Electric Facility, Guildline, RIIS-TR-94-2, National Institute of Industrial Safety, 1994.[4] M.-R.Lin and C.-Y.Chen, “Applications of Inherently Safer Design on Industrial Processes,” Chemical Engineering, Vol.47, No.1, 2000, pp.41-51.[5] M.C.Chiu, “An Automatic Thermal Control on Green-house Using Network Remote Controlling System,” Journal of Applied Sciences , Vol.10, No.17, 2010, pp.1944-1950.[6] M.C.Chiu,“A Multi-Function Aquarium Equipped with Automatic Thermal Control/Fodder-Feeding/Water Treat-ment Using Network Remote Controlling System,” Information Technology Journal , Vol.9, No.7, 2010, pp.1458-1466.[7] M.C.Chiu, “The Study of Remote Network Monitoring and Controlling System on Thermal Procedure,” in: Y.-L.Chang-Hwa and C.-H.Chai-Ialley, Eds., The Proceedings of 2008 Academic Joint Venture, 2008.[8] M.C.Chiu, H.C.Cheng and M.J.Hsu, “The Study of Remote Network Monitoring and Controlling System on Gas-Driven Robotic,” The Proceedings of Mechanics, Light, and Electricity, San-Johns Technical University, Taipei, 2008.A Three-Axis Robot Using a Remote Network Control System

Min-Chie Chiu, Tian-Syung Lan, Ho-Chih Cheng Department of Automatic Control Engineering, Chungchou Institute of Technology,Changhua, Taiwan, China

Department of Information Management, Yu Da University, Miaoli, Taiwan, China

E-mail : tslan888@yahoo.com.tw

Received August 7 , 2010;revised October 8 , 2010;accepted October 18 , 2010

Abstract For the petroleum industry, to reduce the risk of a gas explosion in dangerous working areas, the use of explosion-proof equipment such as air-driven devices which are free from explosions becomes essential.Moreover, for the purpose of saving manpower, a remote operation using a robot via a visual monitoring system and a network is used.However, to overcome the drawback of costly manpower and to improve safety in explosion-prone zones, a three-axis robot using a remote network control system is proposed.In this paper, the three-axis robot can be monitored on line via the USB protocol.Furthermore, it also can be remotely manipulated via the TCP/IP protocol by clicking the command of the VB interface on the client pc.Consequently, the remote-control three-axis robot can not only work for people in severe and dangerous circumstances but also can reduce the cost of manpower.Keywords: Three-Axis Robot, Remote Network Monitoring

1.Introduction

As new trends in the modern world evolve, robots begin to make their presence felt.In order to improve the process and reduce unnecessary manpower, various industrial robots have been widely developed [1].Traditional robot driven by electrical motor used in a dangerous explosion zone has been prohibited.To overcome the drawback, a new design of explosion proof for an electrical motor is required [2].However, it is extremely expensive.Therefore, to avoid explosions caused by sparks in the petroleum industry, an air-driven device which is explosion free is necessary [3,4].Currently, various robots have been presented;however, they lack remote interactivity between the robot and the user.In order to manually operate a robot to execute a specific job in a dangerous working area, a remote-control robot system driven by air is vital.In this paper, the three-axis robot equipped with a web camera, which can be monitored online via the USB protocol, is established.Obviously, the remote-control three-axis robot not only can work for people in volatile and dangerous circumstances but also can lower the cost of manpower.Consequently, a PC-based control system is constructed using a VB interface in both a sever pc and a client pc via the RS232/RS485 protocol.2.A PC-Based Remote Controlling System

Automation systems used in industrial processing to reduce manpower are seen everywhere.As indicated in Figure 1, a remote three-axis robot system using two VB interfaces(one in the sever pc and the other in the client pc)via a network and a web camera has been established.As indicated in Figure 2, two kinds of system modulus(7060D and 7520)are applied in the remote monitoring/control system.Because of the serious decay of the signal for a RS232 protocol traveling over a distance of fifteen meters, a new protocol(RS485)in which the effect of signal decay is trivial for long-distance transportation is recommended [5,6].Here, the 7520 module is a protocol transfer device from RS232 to RS485 [7,8].A command emitted from the sever pc will be sent to other modulus via the RS232/RS485 converter.The hardware of the electromagnetic control valve shown in Figure 3 is used to manipulate the piston motion(i.e., the motion of the robotic arm)using a 7060D module’s DI/O(digital input and output)that is emitted from a sever pc via a 7520A module(a protocol translator from RS232 to RS285).As indicated in Figure 4 , the electromagnetic control valve will be triggered by the digital output signal of the 7060 module via a RS232/RS485 protocol using a VB interface on the sever pc.The status of the piston positions will be also detected by the digital input signal of the 7060 module transmitted from the magnetic signals(a0, a1, b0, b1, c0, and c1)of the pistons.Figure 1.A remote three-axis robot system.Figure 2.Two kinds of modulus.Figure 3.The diagram of the pistons with respect to three electromagnetic control valves.As indicated in Figures 5 and 6 , the user can manipulate the robot’s arm by clicking the movement button to actuate the related electromagnetic control valve via the VB dialogue on both the pc sever and the pc client.Moreover, the current position of pistons A, B, and C will be monitored by the lights of A+, A–, B+, B–, C+, and C– in the VB dialogues in pc server and client.Before the gas robotic arm is performed, the system confirmation is carried based on a system testing diagram.As indicated in Figure 7 , the signals of three electromagnetic control valves will be rechecked during the manipulating process.Besides, the related piston triggered by clicking the command button in the VB dialogue will also be responded to the lights of A+, A–, B+, B–, C+, and C– in pc’s interface.To monitor the real motion of robotic arm online, a web camera is installed.The image of the robotic arm will be caught and sent back to the sever pc via a USB protocol.Moreover, the image will be transmitted to the client pc via the TCP/IP protocol.Figure 4.The wire connections of the modulus.3.Results and Discussion

3.1.Results

As indicated in Figures 5 and 6 , the remote control of a three-axis robot using two VB interfaces(one in the sever pc and the other in the client pc)via a network and a web camera has been established successfully.Before the client pc can be manipulated, based on the TCP/IP protocol, the sever pc shall be connected first by inputting the IP address and transp ort number in the client’s pc dialogue.To keep the

Figure 5.The manual movement of the robot’s arm on the VB dialogue(pc sever).Figure 6.The manual movement of the robot’s arm on the VB dialogue(pc client).Figure 7.A system testing diagram for a remote-controlled three-axis robotic arm.robotic arm in a specific motion, six buttons(x-axis forward, x-axis backward, y-axis forwarding, y-axis backward, z-axis forward, and z-axis backward,)of the robot’s motion will be selected on the VB dialogue of the sever pc.3.2.Discussion

The user can manipulate the robotic arm in both the pc sever and the pc client.The status of the robotic arm(the electromagnetic signal of the piston’s location)shown in the VB interface will be transmitted to the pc client via a TCP/IP protocol.The command clicked in the pc client will be also transmitted to the pc sever to actuate the electromagnetic control valve so as to control the piston motion of the piston by switching the air path.Meanwhile, the signals of pistons’position will be translated as the lights of A+, A–, B+, B–, C+, and C– shown in two VB dialogues in pc server and client.Moreover, the image of the robotic arm will be caught and sent to the pc sever using the USB protocol.The image will be then transmitted from the pc sever to the pc client via the TCP/IP.4.Conclusions

It has been shown that a remote control system dealing with an air-driven three-axis robotic arm reduces manpower, avoids the explosion, and improves the industrial process.Traditional robot driven by electrical motor used in a dangerous explosion zone has been prohibited.Moreover, an alternative design of explosion proof for an electrical motor is expensive.Therefore, in order to save manpower, avoid the danger for explosion simultaneously, and to cost down the f ee of machine, an air-driven robotic arm is compulsory.The air-driven robot provides no spark in the chemical process and can be safely and remotely manipulated using a VB dialogue to trigger an air-driven piston, which is actuated by an electromagnetic control valve via the RS232/RS485.Additionally, a visual monitoring of the robotic arm is performed by transmitting the image of the robotic motion to the sever pc via the USB protocol.Moreover, the image of the robotic motion will be forwarded to the client pc via the TCP/IP protocol.The user at the client pc can also manipulate the robotic motion using a VB interface at the client pc via the TCP/IP protocol.Consequently, it is noted that both the safety of workers/plant and the efficiency of the industrial process will be improved if an air-driven robotic arm in conjunction with a remote network monitoring/control system is applied when operating in a dangerous work environment.5.Acknowledgements

The authors acknowledge the financial support of the Project(CCUT-AI-96-AC02).The author would like to thank the anonymous referees who kindly provided the suggestions and comments to improve this work.6.References

[1] M.C.Chiu, L.J.Yeh and Y.C.Lin, “The Design and Application of a Robot ic Vacuum Cleaner,” Journal of Information & Optimization Sciences, Vol.30, No.1, 2009, pp.39-62.[2] H.A.Akeel and A.J.Malarz, “Electric Robot for Use in a Hazardous Location,” United States Patent 4984745, 2002.[3] Users’ Guidebook for Explosion Protection Electric Facility, Guildline, RIIS-TR-94-2, National Institute of Industrial Safety, 1994.[4] M.-R.Lin and C.-Y.Chen, “Applications of Inherently Safer Design on Industrial Processes,” Chemical Engineering, Vol.47, No.1, 2000, pp.41-51.[5] M.C.Chiu, “An Automatic Thermal Control on Green-house Using Network Remote Controlling System,” Journal of Applied Sciences , Vol.10, No.17, 2010, pp.1944-1950.[6] M.C.Chiu,“A Multi-Function Aquarium Equipped with Automatic Thermal Control/Fodder-Feeding/Water Treat-ment Using Network Remote Controlling System,” Information Technology Journal , Vol.9, No.7, 2010, pp.1458-1466.[7] M.C.Chiu, “The Study of Remote Network Monitoring and Controlling System on Thermal Procedure,” in: Y.-L.Chang-Hwa and C.-H.Chai-Ialley, Eds., The Proceedings of 2008 Academic Joint Venture, 2008.[8] M.C.Chiu, H.C.Cheng and M.J.Hsu, “The Study of Remote Network Monitoring and Controlling System on Gas-Driven Robotic,” The Proceedings of Mechanics, Light, and Electricity, San-Johns Technical University, Taipei, 2008.

第二篇:機器人外文翻譯

沈陽航空工業學院學士學位論文

機 器 人

工業機器人是在生產環境中以提高生產效率的工具,它能做常規乏味的裝配線工作,或能做那些對于工人來說是危險的工作,例如,第一代工業機器人是用來在 核電站中更換核燃料棒,如果人去做這項工作,將會遭受有害的放射線的輻射。工業機器人亦能工作在裝配線上將小元件裝配到一起,如將電子元件安放在電路印制板,這樣,工人就能從這項乏味的常規工作中解放出來。機器人也能按程序要求用來拆除炸彈,輔助殘疾人,在社會的很多應用場合下履行職能。

機器人可以認為是將手臂末端的工具、傳感器和(或)手爪移到程序指定位置的一種機器。當機器人到達位置后,它將執行某種任務。這些任務可以是焊接、密封、機器裝料、拆卸以及裝配工作。除了編程以及系統的開停之外,一般來說這些工作可以在無人干預下完成。如下敘述的是機器人系統基本術語:

1.機器人是一個可編程、多功能的機械手,通過給要完成的不同任務編制各種動作,它可以移動零件、材料、工具以及特殊裝置。這個基本定義引導出后續段落的其他定義,從而描繪出一個完整的機器人系統。

2.預編程位置點是機器人為完成工作而必須跟蹤的軌跡。在某些位

沈陽航空工業學院學士學位論文

置點上機器人將停下來做某些操作,如裝配零件、噴涂油漆或焊接。這些預編程點貯存在機器人的貯存器中,并為后續的連續操作所調用,而且這些預編程點想其他程序數據一樣,可在日后隨工作需要而變化。因而,正是這種編程的特征,一個工業機器 人很像一臺計算機,數據可在這里儲存、后續調用與編譯。

3.機器手是機器人的手臂,它使機器人能彎曲、延伸和旋轉,提供這些運動的是機器手的軸,亦是所謂的機器人的自由度。一個機器人能有3~16軸,自由度一詞總是與機器人軸數相關。

4.工具和手爪不是機器人自身組成部分,但它們是安裝在機器人手臂末端的附件。這些連在機器人手臂末端的附件可使機器人抬起工件、點焊、刷漆、電弧焊、鉆孔、打毛刺以及根據機器人的要求去做各種各樣的工作。

5.機器人系統還可以控制機器人的工作單元,工作單元是機器人執行任務所處的整體環境,該單元包括控制器、機械手、工作平臺、安全保護裝置或者傳輸裝置。所有這些為保證機器人完成自己任務而必須的裝置都包括在這一工作單元中。另外,來自外設的信號與機器人通訊,通知機器人何時裝配工件、取工件或放工件到傳輸裝置上。機器人系統有三個基本部件:機械手、控制器和動力源。

A.機械手

沈陽航空工業學院學士學位論文

機械手做機器人系統中粗重工作,它包括兩個部分:機構與附件,機械手也用聯接附件基座,圖21-1表示了一機器人基座與附件之間的聯接情況。

機械手基座通常固定在工作區域的地基上,有時基座也可以移動,在這種情況下基座安裝在導軌回軌道上,允許機械手從一個位置移到另外一個位置。

正如前面所提到的那樣,附件從機器人基座上延伸出來,附件就是機器人的手臂,它可以是直動型,也可以是軸節型手臂,軸節型手臂也是大家所知的關節型手臂。

機械臂使機械手產生各軸的運動。這些軸連在一個安裝基座上,然后再連到拖架上,拖架確保機械手停留在某一位置。

在手臂的末端上,連接著手腕(圖21-1),手腕由輔助軸和手腕凸緣組成,手腕是讓機器人用戶在手腕凸緣上安裝不同的工具來做不同的工作。

機械手的軸使機械手在某一區域內執行任務,我們將這個區域為機器人的工作單元,該區域的大小與機械手的尺寸相對應,圖21-2列舉了一個典型裝配機器人的工作單元。隨著機器人機械結構尺寸的增加,工作單元的范圍也必須相應的增加。

機械手的運動有執行元件或驅動系統來控制。執行元件或驅動系統

沈陽航空工業學院學士學位論文

允許各軸力經機構轉變為機械能,驅動系統與機械傳動鏈相匹配。由鏈、齒輪和滾珠絲杠組成的機械傳動鏈驅動著機器人的各軸。

B.控制器

機器人控制器是工作單元的核心。控制器儲存著預編程序供后續調用、控制外設,及與廠內計算機進行通訊以滿足產品更新的需要。

控制器用于控制機械手運動和在工作單元內控制機器人外設。用戶可通過手持的示教盒將機械手運動的程序編入控制器。這些信息儲存在控制器的儲存器中以備后續調用,控制器儲存了機器人系統的所有編程數據,它能儲存幾個不同的程序,并且所有這些程序均能編輯。

控制器要求能夠在工作單元內與外設進行通信。例如控制器有一個輸入端,它能標識某個機加工操作何時完成。當該加工循環完成后,輸入端接通,告訴控制器定位機械手以便能抓取已加工工件,隨后,機械手抓取一未加工件,將其放置在機床上。接著,控制器給機床發出開始加工的信號。

控制器可以由根據事件順序而步進的機械式輪鼓組成,這種類型的控制器可用在非常簡單的機械系統中。用于大多數機器人系統中的控制器代表現代電子學的水平,是更復雜的裝置,即它們是由微處理器操縱的。這些微處理器可以是8位、16位或32位處理器。它們可以使得控制器在操作過程中顯得非常柔性。

沈陽航空工業學院學士學位論文

控制器能通過通信線發送電信號,使它能與機械手各軸交流信息,在機器人的機械手和控制器之間的雙向交流信息可以保持系統操作和位置經常更新,控制器亦能控制安裝在機器人手腕上的任何工具。

控制器也有與廠內各計算機進行通信的任務,這種通信聯系使機器人成為計算機輔助制造(CAM)系統的一個組成部分。

存儲器。給予微處理器的系統運行時要與固態的存儲裝置相連,這些存儲裝置可以是磁泡,隨機存儲器、軟盤、磁帶等。每種記憶存儲裝置均能貯存、編輯信息以備后續調用和編輯。

C.動力源

動力源是給機器人和機械手提供動力的單元。傳給機器人系統的動力源有兩種,一種是用于控制器的交流電,另一種是用于驅動機械手各軸的動力源,例如,如果機器人的機械手是有液壓和氣壓驅動的,控制信號便傳送到這些裝置中,驅動機器人運動。

沈陽航空工業學院學士學位論文

液壓與氣壓系統

僅有以下三種基本方法傳遞動力:電氣,機械和流體。大多數應用系統實際上是將三種方法組合起來而得到最有效的最全面的系統。為了合理地確定采取哪種方法。重要的是了解各種方法的顯著特征。例如液壓系統在長距離上比機械系統更能經濟地傳遞動力。然而液壓系統與電氣系統相比,傳遞動力的距離較短。

液壓動力傳遞系統涉及電動機,調節裝置和壓力和流量控制,總的來說,該系統包括:

泵:將原動機的能量轉換成作用在執行部件上的液壓能。閥:控制泵產生流體的運動方向、產生的功率的大小,以及到達執行部件流體的流量。功率大小取決于對流量和壓力大小的控制。

執行部件:將液壓能轉成可用的機械能。

介質即油液:可進行無壓縮傳遞和控制,同時可以潤滑部件,使閥體密封和系統冷卻。

聯接件:聯接各個系統部件,為壓力流體提供功率傳輸通路,將液體返回油箱(貯油器)。

油液貯存和調節裝置:用來確保提供足夠質量和數量并冷卻的液體。

沈陽航空工業學院學士學位論文

液壓系統在工業中應用廣泛。例如沖壓`鋼類工件的磨削幾一般加工業、農業、礦業、航天技術、深海勘探、運輸、海洋技術,近海天然氣和石油勘探等行業,簡而言之,在日常生活中有人不從液壓技術中得到某種益處。

液壓系統成功而又廣泛使用的秘密在于它的通用性和易操作性。液壓動力傳遞不會象機械系統那樣受到機器幾何形狀的制約,另外,液壓系統不會像電氣系統那樣受到材料物理性能的制約,它對傳遞功率幾乎沒有量的限制。例如,一個電磁體的性能受到鋼的磁飽和極限的限制,相反,液壓系統的功率僅僅受材料強度的限制。

企業為了提高生產率將越來越依靠自動化,這包括遠程和直接控制生產操作、加工過程和材料處理等。液壓動力之所以成為自動化的組成部分,是因為它有如下主要的特點:

1.控制方便精確

通過一個簡單的操作桿和按扭,液壓系統的操作者便能立即起動,停止、加減速和能提供任意功率、位置精度為萬分之一英寸的位置控制力。圖13-1是一個使飛機駕駛員升起和落下起落架的液壓系統,當飛行向某方向移動控制閥,壓力油流入液壓缸的某一腔從而降下起落架。飛行員向反方向移動控制閥,允許油液進入液壓缸的另一腔,便收回起落架。

2.增力 一個液壓系統(沒有使用笨重的齒輪、滑輪和杠桿)能簡單

沈陽航空工業學院學士學位論文

有效地將不到一盎司的力放大產生幾百噸的輸出。

3.恒力或恒扭矩

只有液壓系統能提供不隨速度變化而變化的恒力或恒扭矩,他可以驅動對象從每小時移動幾英寸到每分鐘幾百英寸,從每小時幾轉到每分鐘幾千轉。

4.簡便、安全、經濟

總的來說,液壓系統比機械或電氣系統使用更少的運動部件,因此,它們運行與維護簡便。這使得系統結構緊湊,安全可靠。例如 一種用于車輛上的新型動力轉向控制裝置一淘汰其他類型的轉向動力裝置,該轉向部件中包含有人力操縱方向控制閥和分配器。因為轉向部件是全液壓的,沒有方向節、軸承、減速齒輪等機械連接,使得系統簡單緊湊。

另外,只需要輸入很小的扭矩就能產生滿足極其惡劣的工作條件所需的控制力,這對于因操作空間限制而需要小方向盤的場合很重要,這也是減輕司機疲勞度所必須的。

液壓系統的其他優點包括雙向運動、過載保護和無級變速控制,在已有的任何動力、系統中液壓系統也具有最大的單位質量功率比。

盡管液壓系統具有如此的高性能,但它不是可以解決所有動力傳遞問題的靈丹妙藥。液壓系統也有缺點,液壓油有污染,并且泄露不可能完全避免,另外如果油液滲漏發生在灼熱設備附近,大多數液壓油能引起火災。

沈陽航空工業學院學士學位論文

氣壓系統

氣壓系統是用壓力氣體傳遞和控制動力,正如名稱所表明的那樣,氣壓系統通常用空氣(不用其他氣體)作為流體介質,因為空氣是安全、成本低而又隨處可得的流體,在系統部件中產生電弧有可能點燃泄露物的場合下(使用空氣作為介質)尤其安全。

在氣壓系統中,壓縮機用來壓縮并提供所需的空氣。壓縮機一般有活塞式、葉片式和螺旋式等類型。壓縮機基本上是根據理想氣體法則,通過減小氣體體積來增加氣體壓力的。氣壓系統通常考慮采用大的中央空氣壓縮機作為一個無限量的氣源,這類似于電力系統中只要將插頭插入插座邊可獲得電能。用這種方法,壓力氣體可以總氣體源輸送到整個工廠的各個角落,壓力氣體可通過空氣濾清器除去污物,這些污染可能會損壞氣動組件的精密配合部件如閥和汽缸等,隨后輸送到各個回路中,接著空氣流經減壓閥以減小氣壓值適合某一回路使用。因為空氣不是好的潤滑油,氣壓系統需要一個油霧器將細小的油霧注射到經過減壓閥減壓空氣中,這有幫助于減少氣動組件精密配合運動件的磨損。

由于來自大氣中的空氣含不同數量的水分,這些水分是有害的,它可以帶走潤滑劑引起的過分磨損和腐蝕,因此,在一些使用場合中,要用空氣干燥器來除去這些有還的水分。由于氣壓系統直接向大氣排

沈陽航空工業學院學士學位論文

氣,會產生過大的噪聲,因此可在氣閥和執行組件排氣口安裝銷聲器來降低噪聲,以防止操作人員因接觸噪聲及高速空氣粒子有可能引發的傷害。

用氣動系統代替液壓系統有以下幾條理由:液體的慣性遠比氣體大,因此,在液壓系統中,當執行組件加速減速和閥突然開啟關閉時,油液的質量更是一個潛在的問題,根據牛頓運動定律,產生加速度運動油液所需的力要比加速同等體積空氣所需的力高出許多倍。液體比氣體具有更大的粘性,這會因為內摩擦而引起更大的壓力和功率損失;另外,由于液壓系統使用的液體要與大氣隔絕,故它們需要特殊的油箱和無泄露系統設計。氣壓系統使用可以直接排到周圍環境中的空氣,一般來說氣壓系統沒有液體系統昂貴。

然而,由于空氣的可壓縮性,使得氣壓系統執行組件不可能得到精確的速度控制和位置控制。氣壓系統由于壓縮機局限,其系統壓力相當低(低于250psi),而液壓力可達1000psi之高,因此液壓系統可以是大功率系統,而氣動系統僅用于小功率系統,典型例子有沖壓、鉆孔、夾緊、組裝、鉚接、材料處理和邏輯控制操作等。

第三篇:智能機器人外文翻譯

Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on.With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being.The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program.At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use.To development economic practicality and high reliability robot system will be value to robot social application and economy development.With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal.Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal.The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity.Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding.With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration, electronic, software and hardware.In this article, the mechanical configuration combines the character of direction coordinate and the arthrosis coordinate which can improve the stability and operation flexibility of the system.The main function of the transmission mechanism is to transmit power to implement department and complete the necessary movement.In this transmission structure, the screw transmission mechanism transmits the rotary motion into linear motion.Worm gear can give vary transmission ratio.Both of the transmission mechanisms have a characteristic of compact structure.The design of drive system often is limited by the environment condition and the factor of cost and technical lever.'The step motor can receive digital signal directly and has the ability to response outer environment immediately and has no accumulation error, which often is used in driving system.In this driving system, open-loop control system is composed of stepping motor, which can satisfy the demand not only for control precision but also for the target of economic and practicality.on this basis, the analysis of stepping motor in power calculating and style selecting is also given.The analysis of kinematics and dynamics for object holding manipulator is given in completing the design of mechanical structure and drive system.Kinematics analysis is the basis of path programming and track control.The positive and reverse analysis of manipulator gives the relationship between manipulator space and drive space in position and speed.The relationship between manipulator’s tip position and arthrosis angles is concluded by coordinate transform method.The geometry method is used in solving inverse kinematics problem and the result will provide theory evidence for control system.The f0unction of dynamics is to get the relationship between the movement and force and the target is to satisfy the demand of real time control.in this chamfer, Newton-Euripides method is used in analysis dynamic problem of the cleaning robot and the arthrosis force and torque are given which provide the foundation for step motor selecting and structure dynamic optimal ting.Control system is the key and core part of the object holding manipulator system design which will direct effect the reliability and practicality of the robot system in the division of configuration and control function and also will effect or limit the development cost and cycle.With the demand of the PCL-839 card, the PC computer which has a.tight structure and is easy to be extended is used as the principal computer cell and takes the function of system initialization, data operation and dispose, step motor drive and error diagnose and so on.A t the same time, the configuration structure features, task principles and the position function with high precision of the control card PCL-839 are analyzed.Hardware is the matter foundation of the control.System and the software is the spirit of the control system.The target of the software is to combine all the parts in optimizing style and to improve the efficiency and reliability of the control system.The software design of the object holding manipulator control system is divided into several blocks such as 2 system initialization block, data process block and error station detect and dispose model and so on.PCL-839 card can solve the communication between the main computer and the control cells and take the measure of reducing the influence of the outer signal to the control system.The start and stop frequency of the step motor is far lower than the maximum running frequency.In order to improve the efficiency of the step motor, the increase and decrease of the speed is must considered when the step motor running in high speed and start or stop with great acceleration.The increase and decrease of the motor’s speed can be controlled by the pulse frequency sent to the step motor drive with a rational method.This can be implemented either by hardware or by software.A step motor shift control method is proposed, which is simple to calculate, easy to realize and the theory means is straightforward.The motor' s acceleration can fit the torque-frequency curve properly with this method.And the amount of calculation load is less than the linear acceleration shift control method and the method which is based on the exponential rule to change speed.The method is tested by experiment.At last, the research content and the achievement are sum up and the problems and shortages in main the content are also listed.The development and application of robot in the future is expected.機器人

機器人是典型的機電一體化裝置,它綜合運用了機械與精密機械、微電子與計算機、自動控制與驅動、傳感器與信息處理以及人工智能等多學科的最新研究成果,隨著經濟的發展和各行各業對自動化程度要求的提高,機器人技術得到了迅速發展,出現了各種各樣的機器人產品。機器人產品的實用化,既解決了許多單靠人力難以解決的實際問題,又促進了工業自動化的進程。目前,由于機器人的研制和開發涉及多方面的技術,系統結構復雜,開發和研制的成本普遍較高,在某種程度上限制了該項技術的廣泛應用,因此,研制經濟型、實用化、高可靠性機器人系統具有廣泛的社會現實意義和經濟價值。

由于我國經濟建設和城市化的快速發展,城市污水排放量增長很快,污水處理己經擺在了人們的議事日程上來。隨著科學技術的發展和人類知識水平的提高,人們越來越認識到污水處理的重要性和迫切性,科學家和研究人員發現塑料制品在水中是用于污水處理的很有效的污泥菌群的附著體。塑料制品的大量需求,使得塑料制品生產的自動化和高效率要求成為經濟發展的必然。

本文結合塑料一次擠出成型機和塑料抓取機械手的研制過程中出現的問題,綜述近幾年機器人技術研究和發展的狀況,在充分發揮機、電、軟、硬件各自特點和優勢互補的基礎上,對物料抓取機械手整體機械結構、傳動系統、驅動裝置和控制系統進行了分析和設計,提出了一套經濟型設計方案。采用直角坐標和關節坐標相結合的框架式機械結構形式,這種方式能夠提高系統的穩定性和操作靈活性。傳動裝置的作用是將驅動元件的動力傳遞給機器人機械手相應的執行機構,以實現各種必要的運動,傳動方式上采用結構緊湊、傳動比大的蝸輪蝸桿傳動和將旋轉運動轉換為直線運動的螺旋傳動。機械手驅動系統的設計往往受到作業環境條件的限制,同時也要考慮價格因素的影響以及能夠達到的技術水平。由于步進電機能夠直接接收數字量,響應速度快而且工作可靠并無累積誤差,常用作數字控制系統驅動機構的動力元件,因此,在驅動裝置中采用由步進電機構成的開環控制方式,這種方式既能滿足控制精度的要求,又能達到經濟性、實用化目的,在此基礎上,對步進電機的功率計一算及選型問題經行了分析。

在完成機械結構和驅動系統設計的基礎上,對物料抓取機械手運動學和動力學進行了分析。運動學分析是路徑規劃和軌跡控制的基礎,對操作臂進行了運動學正、逆問題的分析可以完成操作空間位置和速度向驅動空間的映射,采用齊次坐標變換法得到了操作臂末端位置和姿態隨關節夾角之間的變換關系,采用幾何法分析了操作臂的逆向運動學方程求解問題,對控制系統設計提供了理論依據。機器人動力學是研究物體的運動和作用力之間的關系的科學,研究的目的是為了4 滿足是實時性控制的需要,本文采用牛頓-歐拉方法對物料抓取機械手動力學進行了分析,計算出了關節力和關節力矩,為步進電機的選型和動力學分析與結構優化提供理論依據。

控制部分是整個物料抓取機械手系統設計關鍵和核心,它在結構和功能上的劃分和實現直接關系到機器人系統的可靠性、實用性,也影響和制約機械手系統的研制成本和開發周期。在控制主機的選用上,采用結構緊湊、擴展功能強和可靠性高的PC工業控制計算機作為主機,配以PCL-839卡主要承擔系統功能初始化、數據運算與處理、步進電機驅動以及故障診斷等功能;同時對PCL-839卡的結構特點、功能原理和其高定位功能等給與了分析。硬件是整個控制系統以及極限位置功能賴以存在的物質基礎,軟件則是計算機控制系統的神經中樞,軟件設計的目的是以最優的方式將各部分功能有機的結合起來,使系統具有較高的運行效率和較強的可靠性。在物料抓取機械手軟件的設計上,采用的是模塊化結構,分為系統初始化模塊、數據處理模塊和故障狀態檢測與處理等幾部分。主控計算機和各控制單元之間全部由PCL-839卡聯系,并且由該卡實現抗干擾等問題,減少外部信號對系統的影響。

步進電機的啟停頻率遠遠小于其最高運行頻率,為了提高工作效率,需要步進電機高速運行并快速啟停時,必須考慮它的升,降速控制問題。電機的升降速控制可以歸結為以某種合理的力一式控制發送到步進電機驅動器的脈沖頻率,這可由硬件實現,也可由軟件方法來實現。本文提出了一種算法簡單、易于實現、理論意義明確的步進電機變速控制策略:定時器常量修改變速控制方案。該方法能使步進電機加速度與其力矩——頻率曲線較好地擬合,從而提高變速效率。而且它的計算量比線性加速度變速和基于指數規律加速度的變速控制小得多。通過實驗證明了該方法的有效性。

最后,對論文主要研究內容和取得的技術成果進行了總結,提出了存在的問題和不足,同時對機器人技術的發展和應用進行了展望。

第四篇:機器人算法外文翻譯

Improved Genetic Algorithm and Its Performance Analysis

Abstract: Although genetic algorithm has become very famous with its global searching, parallel computing, better robustness, and not needing differential information during evolution.However, it also has some demerits, such as slow convergence speed.In this paper, based on several general theorems, an improved genetic algorithm using variant chromosome length and probability of crossover and mutation is proposed, and its main idea is as follows : at the beginning of evolution, our solution with shorter length chromosome and higher probability of crossover and mutation;and at the vicinity of global optimum, with longer length chromosome and lower probability of crossover and mutation.Finally, testing with some critical functions shows that our solution can improve the convergence speed of genetic algorithm significantly , its comprehensive performance is better than that of the genetic algorithm which only reserves the best individual.Genetic algorithm is an adaptive searching technique based on a selection and reproduction mechanism found in the natural evolution process, and it was pioneered by Holland in the 1970s.It has become very famous with its global searching, parallel computing, better robustness, and not needing differential information during evolution.However, it also has some demerits, such as poor local searching, premature converging, as well as slow convergence speed.In recent years, these problems have been studied.In this paper, an improved genetic algorithm with variant chromosome length and variant probability is proposed.Testing with some critical functions shows that it can improve the convergence speed significantly, and its comprehensive performance is better than that of the genetic algorithm which only reserves the best individual.In section 1, our new approach is proposed.Through optimization examples, in section 2, the efficiency of our algorithm is compared with the genetic algorithm which only reserves the best individual.And section 3 gives out the conclusions.Finally, some proofs of relative theorems are collected and presented in appendix.Description of the algorithm 1.1 Some theorems Before proposing our approach, we give out some general theorems(see

appendix)as follows: Let us assume there is just one variable(multivariable can be divided into many sections, one section for one variable)x ∈ [ a, b ] , x ∈ R, and chromosome length with binary encoding is 1.Theorem 1

Minimal resolution of chromosome is s = b?a 2l?1Theorem 2

Weight value of the ith bit of chromosome is

wi = b?ai?1(i = 1,2,…l)2l?1Theorem 3

Mathematical expectation Ec(x)of chromosome searching step with one-point crossover is Ec(x)= b?aPc 2lwhere Pc is the probability of crossover.Theorem 4

Mathematical expectation Em(x)of chromosome searching step with bit mutation is Em(x)=(b-a)Pm

1.2 Mechanism of algorithm

During evolutionary process, we presume that value domains of variable are fixed, and the probability of crossover is a constant, so from Theorem 1 and 3, we know that the longer chromosome length is, the smaller searching step of chromosome, and the higher resolution;and vice versa.Meanwhile, crossover probability is in direct proportion to searching step.From Theorem 4, changing the length of chromosome does not affect searching step of mutation, while mutation probability is also in direct proportion to searching step.At the beginning of evolution, shorter length chromosome(can be too shorter, otherwise it is harmful to population diversity)and higher probability of crossover and mutation increases searching step, which can carry out greater domain searching, and avoid falling into local optimum.While at the vicinity of global optimum, longer length chromosome and lower probability of crossover and mutation will decrease searching step, and longer length chromosome also improves resolution of mutation, which avoid wandering near the global optimum, and speeds up algorithm

converging.Finally, it should be pointed out that chromosome length changing keeps individual fitness unchanged, hence it does not affect select ion(with roulette wheel selection).1.3 Description of the algorithm

Owing to basic genetic algorithm not converging on the global optimum, while the genetic algorithm which reserves the best individual at current generation can, our approach adopts this policy.During evolutionary process, we track cumulative average of individual average fitness up to current generation.It is written as 1X(t)= GG?ft?1avg(t)where G is the current evolutionary generation, fitness.favg is individual average When the cumulative average fitness increases to k times(k> 1, k ∈ R)of initial individual average fitness, we change chromosome length to m times(m is a positive integer)of itself , and reduce probability of crossover and mutation, which can improve individual resolution and reduce searching step, and speed up algorithm converging.The procedure is as follows:

Step 1 Initialize population, and calculate individual average fitness and set change parameter flag.Flag equal to 1.favg0, Step 2 Based on reserving the best individual of current generation, carry out selection, regeneration, crossover and mutation, and calculate cumulative average of individual average fitness up to current generation

favg;

favgStep 3 If

favg0≥k and Flag equals 1, increase chromosome length to m times of itself, and reduce probability of crossover and mutation, and set Flag equal to 0;otherwise continue evolving.Step 4 If end condition is satisfied, stop;otherwise go to Step 2.2 Test and analysis

We adopt the following two critical functions to test our approach, and compare it with the genetic algorithm which only reserves the best individual: f1(x,y)?0.5?sin2x2?y2?0.5[1?0.01x?y?222?]

x,y∈ [?5,5]

[?1,1] f2(x,y)?4?(x2?2y2?0.3cos(3πx)?0.4cos(4πy))

x,y∈2.1 Analysis of convergence During function testing, we carry out the following policies: roulette wheel select ion, one point crossover, bit mutation, and the size of population is 60, l is chromosome length, Pc and Pm are the probability of crossover and mutation respectively.And we randomly select four genetic algorithms reserving best individual with various fixed chromosome length and probability of crossover and mutation to compare with our approach.Tab.1 gives the average converging generation in 100 tests.In our approach, we adopt initial parameter l0= 10, Pc0= 0.3, Pm0= 0.1 and k= 1.2, when changing parameter condition is satisfied, we adjust parameters to l= 30, Pc= 0.1, Pm= 0.01.From Tab.1, we know that our approach improves convergence speed of genetic algorithm significantly and it accords with above analysis.2.2 Analysis of online and offline performance

Quantitative evaluation methods of genetic algorithm are proposed by Dejong, including online and offline performance.The former tests dynamic performance;and the latter evaluates convergence performance.To better analyze online and offline performance of testing function, w e multiply fitness of each individual by 10, and we give a curve of 4 000 and 1 000 generations for f1 and f2, respectively.(a)online

(b)online

Fig.1 Online and offline performance of f1

(a)online

(b)online

Fig.2 Online and offline performance of f2

From Fig.1 and Fig.2, we know that online performance of our approach is just little worse than that of the fourth case, but it is much better than that of the second, third and fifth case, whose online performances are nearly the same.At the same time, offline performance of our approach is better than that of other four cases.Conclusion In this paper, based on some general theorems, an improved genetic algorithm using variant chromosome length and probability of crossover and mutation is proposed.Testing with some critical functions shows that it can improve convergence speed of genetic algorithm significantly, and its comprehensive performance is better than that of the genetic algorithm which only reserves the best individual.Appendix With the supposed conditions of section 1, we know that the validation of Theorem 1 and Theorem 2 are obvious.Theorem 3 Mathematical expectation Ec(x)of chromosome searching step with one point crossover is b?aPc2lEc(x)=

where Pc is the probability of crossover.Proof

As shown in Fig.A1, we assume that crossover happens on the kth locus, i.e.parent’s locus from k to l do not change, and genes on the locus from 1 to k are exchanged.1During crossover, change probability of genes on the locus from 1 to k is 2

(“1” to “0” or “0” to “1”).So, after crossover, mathematical expectation of chromosome searching step on locus from 1 to k is

k11b?a1b?aEck(x)??wj???l?2j?1??l?(2k?1)

22?12?1j?12j?12Furthermore, probability of taking place crossover on each locus of k1chromosome is equal, namely l Pc.Therefore, after crossover, mathematical expectation of chromosome searching step is 1Ec(x)???Pc?Eck(x)

k?1lSubstituting Eq.(A1)into Eq.(A2), we obtain l?1Pb?aP?(b?a)11b?a1?Pc??l?(2k?1)?c?l?[(2i?1)?l]?c(1?l)22?12l2?12l2?1k?1llb?a?0, so Ec(x)?Pc where l is large, l2l2?1Ec(x)??l?1

Fig.A1 One point crossover

Theorem 4 Mathematical expectation Em(x)of chromosome searching step with bit mutation Em(x)?(b?a)?Pm, where Pm is the probability of mutation.Proof Mutation probability of genes on each locus of chromosome is equal, say Pm, therefore, mathematical expectation of mutation searching step is Em(x)=?Pm·wi=?Pm·i=1i=1llb-ai-1b-a·2=P··(2i-1)=(b-a)·Pm mli2-12-1

一種新的改進遺傳算法及其性能分析

摘要:雖然遺傳算法以其全局搜索、并行計算、更好的健壯性以及在進化過程中不需要求導而著稱,但是它仍然有一定的缺陷,比如收斂速度慢。本文根據幾個基本定理,提出了一種使用變異染色體長度和交叉變異概率的改進遺傳算法,它的主要思想是:在進化的開始階段,我們使用短一些的變異染色體長度和高一些的交叉變異概率來解決,在全局最優解附近,使用長一些的變異染色體長度和低一些的交叉變異概率。最后,一些關鍵功能的測試表明,我們的解決方案可以顯著提高遺傳算法的收斂速度,其綜合性能優于只保留最佳個體的遺傳算法。

遺傳算法是一種以自然界進化中的選擇和繁殖機制為基礎的自適應的搜索技術,它是由Holland 1975年首先提出的。它以其全局搜索、并行計算、更好的健壯性以及在進化過程中不需要求導而著稱。然而它也有一些缺點,如本地搜索不佳,過早收斂,以及收斂速度慢。近些年,這個問題被廣泛地進行了研究。

本文提出了一種使用變異染色體長度和交叉變異概率的改進遺傳算法。一些關鍵功能的測試表明,我們的解決方案可以顯著提高遺傳算法的收斂速度,其綜合性能優于只保留最佳個體的遺傳算法。

在第一部分,提出了我們的新算法。第二部分,通過幾個優化例子,將該算法和只保留最佳個體的遺傳算法進行了效率的比較。第三部分,就是所得出的結論。最后,相關定理的證明過程可見附錄。

1算法的描述

1.1 一些定理

在提出我們的算法之前,先給出一個一般性的定理(見附件),如下:我們假設有一個變量(多變量可以拆分成多個部分,每一部分是一個變量)x ∈ [ a, b ] , x ∈ R,二進制的染色體編碼是1.定理1 染色體的最小分辨率是

s =

b?a l2?1定理2 染色體的第i位的權重值是

b?ai?1(i = 1,2,…l)2l?1定理3 單點交叉的染色體搜索步驟的數學期望Ec(x)是

wi =

Ec(x)= b?aPc 2l其中Pc是交叉概率

定理4 位變異的染色體搜索步驟的數學期望Em(x)是

Em(x)=(b-a)Pm

其中Pm是變異概率 算法機制

在進化過程中,我們假設變量的值域是固定的,交叉的概率是一個常數,所以從定理1 和定理3我們知道,較長的染色體長度有著較少的染色體搜索步驟和較高的分辨率;反之亦然。同時,交叉概率與搜索步驟成正比。由定理4,改變染色體的長度不影響變異的搜索步驟,而變異概率與搜索步驟也是成正比的。

進化的開始階段,較短染色體(可以是過短,否則它不利于種群多樣性)和較高的交叉和變異概率會增加搜索步驟,這樣可進行更大的域名搜索,避免陷入局部最優。而全局最優的附近,較長染色體和較低的交叉和變異概率會減少搜索的步驟,較長的染色體也提高了變異分辨率,避免在全局最優解附近徘徊,提高了算法收斂速度。

最后,應當指出,染色體長度的改變不會使個體適應性改變,因此它不影響選擇(輪盤賭選擇)。

算法描述

由于基本遺傳算法沒有在全局優化時收斂,而遺傳算法保留了當前一代的最佳個體,我

們的方法采用這項策略。在進化過程中,我們跟蹤到當代個體平均適應度的累計值。它被寫成:

1GX(t)= favg(t)?Gt?1其中G是當前進化的一代,favg是個體的平均適應度。

當累計平均適用性增加到最初個體平均適應度的k(k> 1, k ∈ R)倍,我們將染色體長度變為其自身的m(m 是一個正整數)倍,然后減小交叉和變異的概率,可以提高個體分辨率、減少搜索步驟以及提高算法收斂速度。算法的執行步驟如下:

第一步:初始化群體,并計算個體平均適應度favg0,然后設置改變參數的標志flag。flag設為1.第二步:在所保留的當代的最佳個體,進行選擇、再生、交叉和變異,并計算當代個體的累積平均適應度favg

favg0第三步:如果

favg?k 且flag = 1,把染色體的長度增加至自身的m倍,減少交叉和變異概率,并設置flag等于0;否則繼續進化。

第四步:如果滿足結束條件,停止;否則轉自第二步。

測試和分析

我們采用以下兩種方法來測試我們的方法,和只保留最佳個體的遺傳算法進行比較:

f1(x,y)?0.5?sin2x2?y2?0.5[1?0.01x?y?222?] [?5,5]

x,y∈ [?1,1] f2(x,y)?4?(x2?2y2?0.3cos(3πx)?0.4cos(4πy))

x,y∈收斂的分析

在功能測試中,我們進行了以下政策:輪盤賭選擇,單點交叉,位變異。種群的規

模是60。L是染色體長度,Pc和Pm分別是交叉概率和變異概率。我們隨機選擇4個遺傳算法所保留的最佳個體來與我們的方法進行比較,它們具有不同的固定染色體長度和交叉和變異的概率。表1給出了在100次測試的平均收斂代。

在我們的方法中,我們采取的初始參數是l0 = 10,Pc0 = 0.3,Pm0 = 0.1和k = 1.2,當滿足改變參數的條件時,我們調整參數l = 30,Pc = 0.1,Pm = 0.01。

1.1 在線和離線性能的分析

Dejong提出了遺傳算法的定量評價方法,包括在線和離線性能評價。前者測試動態性能,而后者評估收斂性能。為了更好地分析測試功能的在線和離線性能,我們把個體的適應性乘以10,并f1和f2分別給出了4 000和1 000代的曲線:

(a)在線

(b)離線

圖1 f1的在線與離線性能

(a)在線

(b)離線

從圖1和圖2可以看出,我們方法的在線性能只比第四種情況差一點點,但比第二種、第三種、第五種好很多,這幾種情況下的在線性能幾乎完全相同。同時,我們方法的離線性能也比其他四種好很多

結論

本文提出了一種使用變異染色體長度和交叉變異概率的改進遺傳算法。一些關鍵功能的測試表明,我們的解決方案可以顯著提高遺傳算法的收斂速度,其綜合性能優于只保留最佳個體的遺傳算法。

附件

有了第一部分中假定的條件,定理1和定理2的驗證是顯而易見的。下面給出定理3和定理4的證明過程:

定理3 單點交叉的染色體搜索步驟的數學期望Ec(x)是

Ec(x)= 其中Pc是交叉概率

b?aPc 2l證明:

如圖A1所示,我們假設交叉發生在第k個基因位點,從k到l的父基因位點沒有變化,基因位點1到k上的基因改變了。

在交叉過程中,1到k基因位點上的基因改變的概率為0.5(“1”變化”0”或者”0”變為”1”),因此,交叉之后,基因位點上的染色體搜索步驟從1到k的數學期望是

k11b?a1b?aEck(x)??wj???l?2j?1??l?(2k?1)

22?12?1j?12j?121此外,每個位點的染色體發生交叉的概率是相等的,即lPc。交叉后,染色

k體搜索步驟的數學期望是

1Ec(x)???Pc?Eck(x)k?1l

把Eq.(A1)替換為Eq.(A2),我們得到 l?1Pb?aP?(b?a)11b?a1?Pc??l?(2k?1)?c?l?[(2i?1)?l]?c(1?l)l22l2l2?12?12?1k?1lb?a?0,所以Ec(x)?Pc 其中l是非常大的,l2l2?1Ec(x)??l?1圖1 單點交叉

定理4 位變異的染色體搜索步驟的數學期望是

Em(x)?(b?a)?Pm

其中Pm是變異概率。證明:

每個基因位點上的基因的變異概率是相等的,比如Pm,因此變異搜索步驟的數學期望是:

Em(x)=?Pm·wi=?Pm·i=1i=1ll

b-ai-1b-a·2=P··(2i-1)=(b-a)·Pmmli2-12-1

第五篇:爬墻機器人外文翻譯

The development trend of the robot 1.Preface: Climbing robot is an important branch in the field of mobile robot, flexible mobile on vertical wall, replace artificial under the condition of the limit to complete various tasks, is one of the hotspot in research of the robot.It is mainly used in the nuclear industry, petrochemical industry, shipbuilding, fire departments and investigation activities, such as the building external wall cleaning, material storage tank in petrochemical enterprise testing and maintenance, the outer wall of large steel plate spray paint, and in building accident rescue and relief, etc., and achieved good social benefits and economic benefits, has wide development prospects.After 30 years of development, the field of robot which has emerged a large number of fruitful results, especially since the 1990 s, especially rapid development in the field of climbing robot at home and abroad.In recent years, due to the development of a variety of new technology, the robot which solved many technical challenges, greatly promote the development of the climbing robot.The robot design activities of universities in our country also has a wide development, this kind of atmosphere for our robot research and development of special and professional talents' cultivation is of positive significance.2.Climbing robot research status abroad 1966 Japanese professor west light wall mobile robot prototype is developed for the first time, and performance success in Osaka prefecture university.This is a kind of rely on negative pressure adsorption climbing robot.Then appeared various types of climbing robot, has already begun to the late 80 s application in the production.Japan's most rapid development in the development of climbing robot, mainly used in the construction industry and nuclear industry.Such as: Japan shimizu construction company has developed with the outer wall of the building industry coating with ceramic tile of the robot, they developed by negative pressure adsorption cleaning climbing robot, on the surface of the glass for the Canadian embassy to clean.Tokyo university of technology development of the wireless remote control magnetic adsorption climbing robot.In Japan's miti “limit homework robot” national research projects, supported by day CDH, developed a large pot of negative pressure adsorption surface inspection robots used in nuclear power plants, etc.Other countries are also added to the climbing robot research upsurge, such as: Seattle Henry R Seemann under the funding of the Boeing company developed a vacuum adsorption crawler “AutoCrawler” robot.On the two tracks each containing a number of small adsorption chamber, with the moving of the crawler, adsorption chamber form continuous vacuum cavity and makes the crawler walking against the wall.American CaseWestern Reserve University developed by using four climbing robot prototype “legs”.Similar to the first two robots, the robot depends on four “legs” on biomimetic viscous materials to adsorption, the prototype is the four legs wheel on the sole of the foot even special distribution is more advantageous to the robot stable crawling on the wall.The quality of the robot is only 87 g.Polytechnic school in the early 1990 s, British Portsmouth has developed a climbing robot multilegged walking type.Adopting modular design, the robot is composed of two similar modules, each module includes two mechanical legs and leg controller.According to the task need to install a different number of legs, reconfigurable ability.Mechanical legs using bionics mechanism, simulation of the large animals arm muscle function, is two type, including upper and lower two and three double-acting cylinder, with three degrees of freedom.Good stability and bearing capacity is big, the robot's lightweight, and can span bigger obstacles.In addition to the leg on one end of vacuum cups, robot equipped with suction cups, abdomen mass ratio of powder and make the robot has a larger load of 2:1.3.Climbing robot research status in China China is also in a similar study since the 1990 s.In 1988 at the national “863” high technology program, under the support of the robotics institute of Harbin institute of technology has successfully developed the use of magnetic adsorption and vacuum adsorption two series of five types of wall climbing robot.Successful development of the our country the first wall climbing robot remote detection, using negative pressure adsorption, omni-directional mobile wheel, used for nuclear waste storage jars of wall weld defect detection.Developed in 1994 for tall buildings wall climbing robot cleaning CLRⅡ, driven by two independent ways--coaxial two-wheeled differential mechanism, through the coordination of two rounds of speed control to realize the omni-directional mobile robot, the robot ontology and using power line carrier communication methods between the ground control station.Above-mentioned three climbing machine adopts single suction cup structure, spring air sealed, ensure the crawl robot with high speed and reliable adhesion ability.In 1995 successfully developed the metal corrosion by magnetic adsorption climbing robot, structure of permanent magnetic adsorption, accomplished by two tracks positive &negative mobile turn.The robot can do for petrochemical enterprises to the outer wall of the metal material storage tank to spray paint, sandblasting, as well as with automatic detection system to test the tank wall thickness.Developed in 1997's detection of water wall climbing robot, a circular permanent magnet adsorption block in conformity with the tank wall arc, improve the adsorption capacity, and improve the efficiency of the operation.Shanghai university also conducted early tall wall cleaning robot research, successively developed a vertical wall climbing robot and spherical wall climbing robot.The spherical wall climbing robot adopts many suckers, negative pressure adsorption, 6 foot independent driving leg feet walking style, can be used for different radius of curvature of the spherical outer wall since 1996, the Beijing university of aeronautics and astronautics has successfully developed WASH2 MAN, CLEANBOT 1, SKYCLEAN, “hanging basket type window robot” and “LanTianJie treasure” curtain wall cleaning robot prototype.For all the window is brushed pneumatic robot;Hanging basket type cleaning robot, the robot depends on the roof of the safety line traction, attached with the negative pressure made by fan robot on the wall in the application background of national grand theatre ellipsoid ceiling cleaning developed suitable for complex curved surface from climbing robot prototype, the climbing mechanism, mobile mechanism, cleaning robot has many similarities, but due to its special working environment and mission requirements, in terms of theory and technology has some particularity.4.The key technology of robot: 4.1 adsorption mechanism, adsorption mechanism of action is to produce an upward force to balance the gravity of the robot, keep it on the wall.Currently, magnetic adsorption methods mainly include vacuum negative pressure adsorption, adsorption, propeller thrust and binder etc.Several ways.Due to the adsorption methods each have limitations, climbing robot developed by often targeted strong, applies only to a specific task, difficult to generalize.Robot design need to work on task, environment, choose the right means of adsorption.In recent years, people through the study of the adsorption mechanism of gecko reptiles such as the soles of your feet, making the polymer synthesis of viscous material, the use of van der Waals force between the molecules and molecular materials, can be obtained on the contact area of small huge adsorption capacity, and has the advantages of adsorption has nothing to do with the surface material properties.Short life but at the moment, the use of these materials, the use of a certain number of times after lose viscosity, practical, need further study.4.2 mobile mechanism and motion control system: mobile mechanism and the movement control system of robot which major wheeled mobile mechanism, more foot type, such as caterpillar, among them, the wheel and foot type which has been widely used, caterpillar much for magnetic adsorption method.Obstacle ability is wall robot which used to an important indicator of performance.When work surface is convex, groove, the robot to go through these obstacles, we must have enough obstacle ability.All kinds of mobile mechanism, more foot type robot obstacle-navigation ability is stronger, its each leg small suction cup is placed, when faced with obstacles, can control the “leg”, make the small suction cup across the obstacles one by one.Wall mobile mechanism of the robot can make the robot on the premise of reliable adsorption can move on the wall.Due to the particularity of climbing robot working in wall, mobile mechanism and adsorption mechanism exists coupling, which brought some difficulties to the robot's motion control.Than climbing robot sucker foot type and legs with a suction cup at the end, every move a leg needs to be done “to eliminate suctionWallace leg, left leg-gasoline, hydrogen fuel can have higher weight ratio, such as advanced micro internal combustion engine can also be applied to the climbing robot.Safety problems: 4.4 the robot by interference, environmental change circumstances, how to ensure the safety of the robot is attached to the wall without falling, falling or after how to minimize the damage of the robot.The past buildings cleaning climbing robot, developed by most used by in carrying the car at the top of the tower, hoisting and wire rope of insurance system on the robot.Robot for some other purposes, such as detection with small climbing robot, the goal is not sure, cannot use the rope way of insurance, so need to study new way to prevent falling.Could consider using a parachute, small power into a pulp, fast supporting resistance drop plate, etc., these may be a future development direction of climbing robot safety measures.5.Development trend of the robot Hard drive, sensor and control the development of software technology has greatly promoted the development of climbing robot technology, the demand of the practical application is also put forward the challenge, the development of robot climbing robot development trend in the aggregate, basically has the following several aspects.(1)the development of new adsorption technology.Adsorption technology has been a bottleneck of the development of the robot, it determines the application range of the robot.(2)the task of robot from simplification to muti_function change direction.The past most climbing robot which is used for washing, spraying, detection and so on homework, homework tasks are often confined to a single task.Now people want climbing robot can equipped with a variety of tools, are working on different occasions.(3)the miniaturization, micromation is currently the trend of the development of the robot.On the premise of meet the functional requirements, small volume, light quality of robot can be less energy consumption, high flexibility, and in some special occasions are also need robot with small volume.(4)by the mooring operation development to the direction of untethered.Because the robot working space is generally larger, mooring operation greatly limits the robot working space, so, in order to improve the flexibility of robot and expand the working space, no cable is changed and is now and the future development trend of the robot.(5)by simple remote monitoring to intelligent direction.Combined with artificial intelligence, the robot can in a closed environment has a certain capacity for independent decision and complete the task, and have ego to protect ability, is the important direction of mobile robot, is also a important development direction of mobile robot climbing wall.(6)the adaptability of the reconfigurable robot is an important indicator.In order to make the robots could be used in different occasions, according to the mission requirements, under the condition of the system does not need to design, make full use of existing robot system, should make with reconfigurable robot, which has a modular structure.According to the mission requirements, the need of module is directly connected to form a new robot.譯文:

1.引言:

爬壁機器人是移動機器人領域的一個重要分支,可在垂直壁面上靈活移動,代替人工在極限條件下完成多種作業任務,是當前機器人領域研究的熱點之一。它主要應用于核工業、石化工業、造船業、消防部門及偵查活動等,如對高樓外壁面進行清洗,對石化企業中的儲料罐外壁進行檢測和維護,對大面積鋼板進行噴漆,以及在高樓事故中進行搶險救災等,并且取得了良好的社會效益和經濟效益,具有廣闊的發展前景。

經過30多年的發展,爬壁機器人領域已經涌現出一大批豐碩的成果,特別是20世紀90年代以來,國內外在爬壁機器人領域中的發展尤為迅速。近年來,由于多種新技術的發展,爬壁機器人的許多技術難題得到解決,極大地推動了爬壁機器人的發展。在我國各高校機器人設計活動也已經很廣的開展起來,這種氛圍對我國機器人的研制開發特別以及專業方面人才的培養是具有積極意義的。

2.國外爬壁機器人研究現狀

1966年日本的西亮教授首次研制成功壁面移動機器人樣機,并在大阪府立大學表演成功。這是一種依靠負壓吸附的爬壁機器人。隨后出現了各種類型的爬壁機器人,到80年代末期已經開始在生產中應用。日本在開發爬壁機器人方面發展最為迅速,主要應用在建筑行業與核工業。如:日本清水建設公司開發了建筑行業用的外壁涂裝與貼瓷磚的機器人,他們研制的負壓吸附清洗玻璃面的爬壁機器人,曾為加拿大使館清洗。東京工業大學開發了無線遙控磁吸附爬壁機器人。在日本通產省”極限作業機器人"國家研究計劃支持下,日暉株式會社開發了用于核電站大罐的負壓吸附壁面檢查機器人等。

其他各國也加入到爬壁機器人研究的熱潮中如:美國西雅圖的Henry R Seemann在波音公司的資助下研制出一種真空吸附履帶式爬壁機器人“AutoCrawler”。其兩條履帶上各裝有數個小吸附室,隨著履帶的移動,吸附室連續地形成真空腔而使得履帶貼緊壁面行走。美國CaseWestern Reserve University研制的采用4個“腿輪”的爬壁機器人樣機。與前兩種機器人相似,該機器人依靠4個“腿輪”上的仿生粘性材料來吸附,樣機不同的是這4個腿輪上腳掌的特殊分布更有利于機器人在壁面上穩定爬行。該機器人質量僅有87 g。20世紀90年代初,英國樸次茅斯工藝學校研制了一種多足行走式的爬壁機器人。采用模塊化設計,機器人由兩個相似的模塊組成,每個模塊包括兩個機械腿和腿部控制器。可根據任務需要來安裝不同數量的腿,可重構能力強。機械腿采用仿生學機構,模擬大型動物臂部肌肉的功能,為兩節式,包括上、下兩個桿和3個雙作用氣缸,具有3個自由度。穩定性好,承載能力大,利于機器人的輕量化,并能跨越較大的障礙物。除腿端部各有一真空吸盤外,機器人腹部設有吸盤, 使機器人具有較大的負載質量比,可達2∶1。

3.國內爬壁機器人研究現狀

中國也于20世紀90年代以來進行類似的研究。1988年在國家“863”高技術計劃的支持下,哈爾濱工業大學機器人研究所先后研制成功了采用磁吸附和真空吸附兩個系列的5種型號壁面爬行機器人。研制成功的我國第一臺壁面爬行遙控檢測機器人,采用負壓吸附,全方位移動輪,用于核廢液儲存罐罐壁焊縫缺陷檢測。1994年開發的用于高樓壁面清洗作業的爬壁機器人CLR-Ⅰ,采用全方位移動機構,機器人在原地就可以任意改變運動方向。之后開發的CLR-Ⅱ,采用兩輪獨立驅動方式———同軸雙輪差速機構, 通過對兩輪速度的協調控制實現機器人的全方位移動,機器人本體和地面控制站之間采用電力線載波通訊方式。上述3款爬壁機器人均采用單吸盤結構,彈簧氣囊密封,保證了機器人具有較高爬行速度和可靠的附著能力。1995年研制成功的金屬管防腐用磁吸附爬壁機器人,采用永磁吸附結構,靠兩條履帶的正反轉移動來實現轉彎。該機器人可以為石化企業金屬儲料罐的外壁進行噴漆、噴砂,以及攜帶自動檢測系統對罐壁涂層厚度進行檢測。1997年研制的水冷壁清檢測爬壁機器人,呈圓弧形永磁吸附塊與罐壁圓弧相吻合,提高了吸附力,也提高了作業的效率。上海大學也較早開展高樓壁面清洗作業機器人的研究,先后研制出垂直壁面爬壁機器人和球形壁面爬壁機器人。該球形壁面爬壁機器人采用多吸盤、負壓吸附、6足獨立驅動腿足行走方式,可用于不同曲率半徑的球形外壁1996年以來,北京航空航天大學先后研制成功WASH2 MAN,CLEANBOT 1,SKYCLEAN,“吊籃式擦窗機器人”和“藍天潔寶”等幕墻清洗機器人樣機。為全氣動擦窗機器人;吊籃式清洗機器人,機器人依靠樓頂上的安全吊索牽引移動,利用風機產生的負壓使機器人貼附在壁面上以國家大劇院橢球形頂棚清洗為應用背景研制的適用于復雜曲面的自攀爬式機器人樣機,由攀爬機構、移動機構、清機器人有許多相似之處,但由于其特殊的工作環境和任務要求,在理論和技術等方面又有一些特殊性。

4.爬壁機器人的關鍵技術:

4.1吸附機構:吸附機構的作用是產生一個向上的力來平衡機器人的重力,使其保持在壁面上。目前,吸附方式主要有真空負壓吸附、磁吸附、螺旋槳推力及粘結劑等幾種方式。由于這些吸附方式各自都有局限性,所研制的爬壁機器人往往針對性較強,只適用于某種特定任務,較難通用化。機器人的設計需要針對工作任務、環境,選取合適的吸附方式。近年來,人們通過研究壁虎等爬行動物腳掌的吸附機理,制作出高分子合成的粘性材料,這些材料利用分子與分子之間的范德華力,在很小的接觸面積上就可獲得巨大的吸附力,而且具有吸附力與表面材料特性無關的優點。但目前這些材料的使用壽命較短, 使用一定次數之后就失去粘性,難以實用化,需要進一步進行研究。

4.2移動機構及運動控制系統:移動機構及運動控制系統爬壁機器人的移動機構主要有輪式、多足式、履帶式等,其中,輪式和足式使用較為廣泛,履帶式多用于磁吸附方式。越障能力是爬壁機器人壁面適應性能的一個重要指標。當工作面上有凸起、溝槽時,機器人要通過這些障礙物,就必須有足夠的越障能力。各種移動機構中,多足式機器人的越障能力較強,其每個腿部都置有小吸盤,當遇到障礙物時,可控制各個“腿”,使小吸盤逐個跨過障礙物。壁面機器人的移動機構可以使機器人在可靠吸附的前提下能夠在壁面上靈活移動。由于爬壁機器人工作于壁面的特殊性,移動機構常和吸附機構存在耦合,這給機器人的運動控制帶來了一些困難。如多吸盤足式爬壁機器人,腿末端各有一個吸盤,每移動一個腿需要完成“消除吸力—抬腿—邁腿—落腿—產生吸附力”一系列動作。在此過程中,機器人移動機構的動作要和吸附機構相互協調,才能保證機器人在壁面上的靈活移動。此外,也有移動機構與吸附機構分離的,如單吸盤爬壁機器人,吸盤可持續吸附,驅動輪連續運動實現機器人的移動,運動控制較為簡單。

4.3能源供應及驅動方式:能源供應及驅動方式能源供應方式有通過電線管路為機 器人提供電、氣等能源的方式,也有自帶電池、氣瓶等方式。驅動方式主要有電機氣動等幾種方式。爬壁機器人的設計盡量采用具有高功效質量比的驅動器和動力源,特別是采用無線控制情況下。采用電機驅動時,能源供應主要有聚合物鋰電池、鎳氫電池、電化學電池和燃料電池。此外,由于內燃機的能源———汽油、氫等燃料具有較高的能重比,先進的微型內燃機也可應用于爬壁機器人。

4.4安全問題:機器人在受到外界干擾、環境變化情況下,如何保證機器人安全附著于壁面而不至于墜落,或墜落后如何盡量減小機器人的損傷。過去所研制的高樓清洗爬壁機器人, 大都采用由置于高樓頂上的運載小車、卷揚機構和系在機器人上的鋼絲繩組成保險系統。而對于一些其他用途的機器人,比如偵查用的小型爬壁機器人,其目標并不確定,不能采用保險繩的方式,因而需要研究新的防墜落方式。可以考慮采用降落傘、小功率螺旋降落漿、快速撐起阻降板等,這些可能會成為未來爬壁機器人安全措施的發展方向。

5.爬壁機器人的發展趨勢

驅動、傳感、控制等硬軟件技術的發展極大地推動了爬壁機器人技術的發展,實際應用的需求也對爬壁機器人的發展提出了挑戰,爬壁機器人的發展趨勢歸結起來主要有以下幾方面。(1)新型吸附技術的發展。吸附技術一直是爬壁機器人發展的一個瓶頸,它決定了機器人的應用范圍。(2)爬壁機器人的任務由單一化向多功能化方向發展。過去所研制的爬壁機器人大多用于清洗、噴涂、檢測等作業,作業任務往往只局限于單一的任務。而目前人們則希望爬壁機器人能夠裝備多種工具,在不同的場合進行工作。(3)小型化、微型化是當前爬壁機器人發展的趨勢。在滿足功能要求的前提下,體積小、質量輕的機器人可較小能耗,具有較高靈活性,并且在某些特殊場合也需要機器人具有小的體積。(4)由帶纜作業向無纜化方向發展。由于爬壁機器人的作業空間一般都較大,帶纜作業極大地限制了機器人的作業空間,所以,為了提高機器人的靈活性和擴大工作空間,無纜化成為現在和未來爬壁機器人的發展趨勢。(5)由簡單遠距離遙控向智能化方向發展。與人工智能相結合,使機器人在封閉環境中能夠具有一定的自主決策能力, 完成任務,并具有自我保護能力,是移動機器人發展的重要方向,也是爬壁移動機器人的重要發展方向。(6)可重構是機器人適應能力的一項重要指標。為了使機器人能夠應用于不同場合,根據任務需求,在不需要重新設計系統條件下,充分利用已有的機器人系統,應使機器人具有可重構性,即具有模塊化結構。根據任務需求,把需要的模塊直接連接起來組成新的機器人。

下載外文翻譯——使用遠程網絡控制系統的三軸機器人word格式文檔
下載外文翻譯——使用遠程網絡控制系統的三軸機器人.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    外文翻譯--六自由度機器人

    六自由度并聯機器人基于Grassmann-Cayley代數的奇異性條件 Patricia Ben-Horin和Moshe Shoham,會員,IEEE 摘要 本文研究了奇異性條件大多數的六自由度并聯機器人在每一個腿上......

    工業機器人機械手外文翻譯

    外 文 翻 譯 Introduction to Robotics Mechanics and Control機器人學入門 力學與控制系別: 機械與汽車工程系 專學業生名姓稱: 機械設計制造及其自動化 名: 郭仕杰 學號:06101......

    機器人心智模式外文翻譯

    機器人更像人類的心智模式與高血壓在人機交互和消極情緒 (2011)3:291-297 DOI 10.1007/s12369-011-0096-9 原始論文 機器人的心理架構隨著越來越多的仿人有關聯有較高的血壓和......

    機器人及機器人傳感技術(畢業論文外文翻譯).

    機器人和機器人傳感器 介紹 工業機器人以及它的運行是本文的主題。工業機器人是應用于制造環境下 以提高生產率的一種工具。 它可用于承擔常規的、 冗長乏味的裝配線工作,......

    3自由度工業機器人(外文翻譯)

    動態優化的一種新型高速,高精度的三自由度機械手 ① 彭蘭(蘭朋)②,魯南立,孫立寧,丁傾永 (機械電子工程學院,哈爾濱理工學院,哈爾濱 150001,中國) ( Robotics Institute。Harbin Inst......

    管道機器人外文翻譯(優秀范文五篇)

    一款使用離合器連接類型的內窺管道機器人 摘要-這篇論文展示了一款使用離合器的新型內窺管道機器人,用于直徑小于或等于100mmde 管道內窺。這款機器人擁有三條驅動軸,且每條驅......

    機器人路徑規劃畢業論文外文翻譯

    外文文獻: Space Robot Path Planning for Collision Avoidance Yuya Yanoshita and Shinichi Tsuda Abstract — This paper deals with a path planning of space robot wh......

    工業機器人的發展外文翻譯

    The development of industrial robots Industrial robot is a robot, it consists of a CaoZuoJi. Controller. Servo drive system and detection sensor device compos......

主站蜘蛛池模板: 亚洲情a成黄在线观看| 国精产品一品二品国精品69xx| 在线播放无码高潮的视频| 国产成人精品无码免费看| 人妻无码不卡中文字幕在线视频| 久久久久久成人综合网| 少妇人妻系列1~100| 亚洲av无码专区在线观看亚| 717影院理论午夜伦八戒| 精品午夜福利在线观看| 51国产黑色丝袜高跟鞋| 少妇人妻真实偷人精品视频| 国产av人人夜夜澡人人爽麻豆| 久久久无码一区二区三区| 亚洲人成网77777色在线播放| 少妇被粗大的猛烈进出动视频| 欧美国产精品久久久乱码| 国产亚洲无线码一区二区| 2021久久精品国产99国产精品| 蜜臀av999无码精品国产专区| 中文亚洲av片在线观看不卡| 又色又污又爽又黄的网站| 亚洲aⅴ永久无码一区二区三区| 中文字幕av无码免费一区| 日韩av片无码一区二区不卡电影| 精品香蕉久久久午夜福利| 中文字幕欧美人妻精品一区| 亚洲一区二区三区av无码| 精品国产免费第一区二区三区| 做爰高潮A片〈毛片〉| 国产一区二区波多野结衣| 亚洲人成在线影院| 天堂网www在线资源| 成人妇女免费播放久久久| 久久综合网丁香五月| 亚洲欧美日韩成人一区| 人妻少妇被猛烈进入中文字幕| 性色做爰片在线观看ww| 亚洲国产精品成人网址天堂| 夜色资源站www国产在线视频| 日本欧美视频在线观看|