第一篇:幾何證明題(難)
附加題:
1、已知:如圖,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q.求證:EP=FQ
2、已知:如圖,在△ABC中,已知AB=AC,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE、始終經過點A,EF與AC交于M點。求證:△ABE∽△ECM;
3、已知:如圖,四邊形ABCD,M為BC邊的中點.∠B=∠AMD=∠C 求證:AM=DM
DA
BCM
4、如圖,P為線段AB上一點,AD與BC交干E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,找出圖中的三對相似三角形,并給予證明。
D
C
E
FG
A BP
5、已知:如圖,△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點且∠EAF=45°,求證:EF2=BE2+FC2.
證明:把△ACF繞A點旋轉90°使AC和AB重合;設F旋轉之后的點是G
6、已知:如圖,AB∥GH∥CD,求證:
111+= ABCDGH7、已知:點F是等邊三角形ABC的邊AC上一動點,(1)、如圖,過點F的直線DE交線段AB于點D,交BC于點E,且CE=AD,求證:FD=FE A
DG F
CBE
(2)、如圖,過點F的直線DE交BA的延長線于點D,交BC于點E,且CE=AD,求證:FD=FE
第二篇:幾何證明題
幾何證明題
1.在三角形ABC中,BD,CE是邊AC,AB上的中點,BD與CE相交于點O,BO與OD的長度有什么關系?BC邊上的中線是否一定過點O?為什么?
答題要求:請寫出詳細的證明過程,越詳細越好.ED平行且等于1/2BC
取MN為BO,OC中點
則MN平行且等于1/2BC
得到ED平行且等于MN,則EDNM是平行四邊形
則OD=OM,又M為BO中點,顯然BO=2OD
一定過
假設BC中線不經過O點,而與BD交與O'
同理可證AO'=2O'G
再可由平行四邊形定理得到O與O'重合所以必過O點
2.在直角梯形ABCD中,角B=角C=90度,AB=BC,M為BC邊上一點。且角DMC=45度
求證:AD=AM
(1)幾何證明題,首先畫圖
哎沒圖不好說啊
就空說吧你在紙上畫圖
先看已知條件,從已知條件得出直觀的結論.因為M是BC邊上一點,在三角形DMC中,角DMC=45度,角MCD=角C=90度,可以知道角MDC=45度,則三角形DMC是個等腰直角三角形,MC=CD.又AB=BC,M是BC邊上一點,MC長度小于BC,所以知道這個直角梯形是以CD為上底,AB為下底,圖形先畫對
接下來求證
要證AD=AM,從已知條件中得知,MC=CD,則作一條輔助線就可得證
連接AC
∵AB=BC,角B=90度∴三角形ABC是個等腰直角三角形
∴角BCA=45度
∴角DCA=角BCD-角BCA=45度=角BCA
所以三角形AMC≌三角形ADC(MC=CD,角DCA=角BCA,AC=AC——邊角邊)
所以AD=AM得證
(2)
延長CD至F點~CF=AB連接AF~~因AB=BC~SO~ABCF是正方形~剩下的就容易了~只要證AFD~和ABM~是一樣的3角形就OK了~~哎~快10年沒碰幾何了~那些專業點的詞我都忘了~這題應該是這樣吧~不知道有沒錯
回答者:fenixkingyu-試用期一級2007-8-719:23
上樓的有兩處錯誤:
1.描述錯誤,ABCF不是四邊形,ABFC才是.2.按照條件并不能證明ABFC是正方形.注意:要證明四邊形是正方形,必須證明2個問題:
1.該四邊形是矩形;2.該四邊形是菱形。
(3)
把圖畫出來就好解了。我是按自己畫的圖解的,樓主畫梯形下面是BA,上面是CD,然后在按我的文字添加輔助線就行了,度那個圓圈打不出來,我就沒寫了。
證明:連接MD,AM,連接AC并交MD于E
因為角DMC=45,角C=90
所以三角形MCD為等邊直角三角形,既角CDM=45
又角B=90AB=BC
所以角CAB=45
由梯形上下兩邊平行,則內對角相加為180度
因角CAB角DMB=45+45=90
所以角EDA角DAE=90
既AC垂直于MD
在等腰直角三角形CDM中則有ME=ED,且AC垂直于MD
所以AE是三角形AMD的中垂線
既AD=AM(等腰三角形的法則)。
第三篇:幾何證明題
幾何證明題集(七年級下冊)
姓名:_________班級:_______
一、互補”。
E
D
二、證明下列各題:
1、如圖,已知∠1=∠2,∠3=∠D,求證:DB//EC.E D
3ACB2、如圖,已知AD//BC,∠1=∠B,求證:AB//DE.AD BCE3、如圖,已知∠1+∠2=1800,求證:∠3=∠4.EC
A1 O
4B
D F4、如圖,已知DF//AC,∠C=∠D,求證:∠AMB=∠ENF.E DF
N
M
AC B5、如圖,在三角形ABC中,D、E、F分別為AB、AC、BC上的點且DE//BC、EF//AB,求證:∠ADE=∠EFC.C
EF
AB D6、如圖,已知EC、FD與直A線AB交于C、D兩點且∠1=∠2,1求證:CE//DF.CE
FD
2B7、如圖,已知∠ABC=∠ADC,BF和DE分別是∠ABC和∠ADC的平分線,AB//CD,求證:DE//BF.FDC
A E8、如圖,已知AC//DE,DC//EF,CD平分∠BCA,求證:EF平分∠BED.B
F
ED
AC9、如圖,AB⊥BF,CD⊥BF, ∠A=∠C,求證: ∠AEB=∠F.CFBDE10、如圖,AD⊥BC,EF⊥BC,∠1=∠2,求證:DG//AB.A
EGBCDF11、在三角形ABC中,AD⊥BC于D,G是AC上任一點,GE⊥BC于E,GE的延長線與BA的延長線交于F,∠BAD=∠CAD,求證:∠AGF=∠F.F
A
G
BCDE12、如圖,∠1=∠2,∠3=∠4,∠B=∠5,求證:CE//DF.F
E 4G1AD 5 2B13、如圖,AB//CD,求證:∠BCD=∠B+∠D.A
CBED14、如上圖,已知∠BCD=∠B+∠D,求證:AB//CD.15、如圖,AB//CD,求證:∠BCD=∠B-∠D.BA
ED
C16、如上圖,已知∠BCD=∠B-∠D,求證:AB//CD.17、如圖,AB//CD,求證:∠B+∠D+∠BED=3600.BA
E
DC18、如上圖,已知∠B+∠D+∠BED=3600,求證:AB//CD.
第四篇:幾何證明題練習
幾何證明題練習
1.如圖1,Rt△ABC中AB = AC,點D、E是線段AC上兩動點,且AD = EC,AM⊥BD,垂足為M,AM的延長線交BC于點N,直線BD與直線NE相交于點F。試判斷△DEF的形狀,并加以證明。
說明:⑴如果你經歷反復探索,沒有找到解決問題的方法,請你把探索過程中的某種思路寫出來(要求至少寫3步);⑵在你經歷說明⑴的過程之后,可以從下列①、②中選取一個補充或更換已知條件,完成你的證明。
注意:選取①完成證明得10分;選取②完成證明得5分。
①畫出將△BAD沿BA方向平移BA長,然后順時針旋轉90°后圖形; ②點K在線段BD上,且四邊形AKNC為等腰梯形(AC∥KN,如圖2)。
附加題:如圖3,若點D、E是直線AC上兩動點,其他條件不變,試判斷△DEF的形狀,并說明理由。
E
A
AM
AMD
D
F
E
F
A
F
K
C
AD
D
F
A
EEC
圖 16
C
N
B
圖 1
5B
MF
MF
圖 17
D
C
圖 17
圖 16圖 15
2.(1)如圖13-1,操作:把正方形CGEF的對角線 CE放在正方形ABCD的邊BC的延長線上(CG>BC),取線段AE的中點M。
探究:線段MD、MF的關系,并加以證明。說明:(1)如果你經歷反復探索,沒有找到解決問題 A 的方法,請你把探索過程中的某種思路寫出來(要求 至少寫3步);(2)在你經歷說明(1)的過程之后,可以從下列①、②、③中選取一個補充或更換已知條件,完成你的證明。
注意:選取①完成證明得10分;選取②完成證明得 7分;選取③完成證明得5分。
① DM的延長線交CE于點N,且AD=NE; A ② 將正方形CGEF繞點C逆時針旋轉45°(如圖13-2),其他條件不變;③在②的條件下且CF=2AD。(2):將正方形CGEF繞點C旋轉任意角度后
(如圖13-
3),其他條件不變。探究:線段MD、MF的關系,并加以證明。
D
F
E
圖
13-2 D
圖13-
33.如圖1,在等腰梯形ABCD中,AD∥BC,E是AB的中點,過點E作EF∥BC交CD于點F.AB?4,BC?6,∠B?60?.(1)求點E到BC的距離;(2)點P為線段EF上的一個動點,過P作PM?EF交BC于點M,過M作MN∥AB交折線ADC于點N,連結PN,設EP?x.MN的形狀是否發生改變?若不變,①當點N在線段AD上時(如圖2),△P求出△PMN的周長;若改變,請說明理由;
②當點N在線段DC上時(如圖3),是否存在點P,使△PMN為等腰三角形?若存在,請求出所有滿足要求的x的值;若不存在,請說明理由.N
A A A D D D B
圖1 A B
D F C
B
F C
B
M
圖
2F C B
N
F
C
M 圖3 D F C
(第3題)A
圖5(備用)圖4(備用)
4.如圖4,△P1OA1,△P2A1A2,△P3A2A3……△PnAn-1An都是等腰直角三角形,點P1、P2、P3……
Pn都在函數y?
(x > 0)的圖象上,斜邊OA1、A1A2、A2A3……An-1An都在x軸上。x
⑴求A1、A2點的坐標;
⑵猜想An點的坐標(直接寫出結果即可)
圖 1
55.如圖5-1,以△ABC的邊AB、AC為直角邊向外作等腰直角△ABE和△ACD,M是BC的中點,請你探究線段DE與AM之間的關系。
說明:⑴如果你經歷反復探索,沒有找到解決問題的方法,請你把探索過程中的某種思路寫出來(要求至少寫
3步);⑵在你經歷說明⑴的過程之后,可以從下列①、②中選取一個補充或更換已知條件,完成你的證明。
注意:選取①完成證明得10分;選取②完成證明得5分。①畫出將△ACM繞某一點順時針旋轉180°后的圖形; ②∠BAC = 90°(如圖17)
附加題:如圖5-3,若以△ABC的邊AB、AC為直角邊,向內作等腰直角△ABE和△ACD,其它條件不變,試探究線段DE與AM之間的關系。
E
E
AM圖 17
C
D
圖 18
EC
D
A
D
M圖 16
6.O點是△ABC所在平面內一動點,連結OB、OC,并將AB、OB、OC、AC的中點D、E、F、G依次連結,如果DEFG能構成四邊形.
(1)如圖,當O點在△ABC內時,求證四邊形DEFG是平行四邊形.(2)當O點移動到△ABC外時,(1)的結論是否成立?畫出圖形并說明理由.(3)若四邊形DEFG為矩形,O點所在位置應滿足什么條件?試說明理由.
A
B
7.如圖,已知三角形ABD為⊙O內接正三角形,C為弧BD上任意一點,已知AC=a,求S四邊形ABCD。
D到直線l的距B、C、8.如圖,已知平行四邊形ABCD及四邊形外一直線l,四個頂點A、離分別為a、b、c、d.
(1)觀察圖形,猜想得出a、b、c、d滿足怎樣的關系式?證明你的結論.(2)現將l向上平移,你得到的結論還一定成立嗎?請分情況寫出你的結論.
9.10.已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,連結EC,取EC的中點M,連結DM和BM.
(1)若點D在邊AC上,點E在邊AB上且與點B不重合,如圖①,探索BM、DM的關系并給予證明;
(2)如果將圖①中的△ADE繞點A逆時針旋轉小于45°的角,如圖②,那么(1)中的結論是否仍成立?如果不成立,請舉出反例;如果成立,請給予證明.
B
A
D C
A
圖②
C
圖①
11.如圖(1)在Rt△ABC中,∠BAC=90°,AB = AC,點D、E分別為線段BC上兩動點,若∠DAE=45°.(1)猜想BD、DE、EC三條線段之間存在的數量關系式,并對你的猜想給予證明;(2)當動點E在線段BC上,動點D運動在線段CB延長線上時,如圖(2),其它條件不變,(1)中探究的結論是否發生改變?請說明你的猜想并給予證明.?ABC?60?,12.(北京市石景山中考模擬試題)(1)如圖1,四邊形ABCD中,AB?CB,?ADC?120?,請你 猜想線段DA、DC之和與線段BD的數量關系,并證明你的結論;
(2)如圖2,四邊形ABCD中,AB?BC,?ABC?60?,若點P為四邊形ABCD內一點,且?APD?120?,請你猜想線段PA、PD、PC之和與線段BD的數量關系,并證明你的結論.
第12題圖1 圖2 13.如圖,將一三角板放在邊長為1的正方形ABCD上,并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經過點B,另一邊與射線DC
相交于Q.探究:設A、P兩點間的距離為x.(1)當點Q在邊CD上時,線段PQ與PB之間有怎樣的 數量關系?試證明你的猜想;
(2)當點Q在邊CD上時,設四邊形PBCQ的面積為y,求y與x之間的函數關系,并寫出函數自變量x的 取值范圍;
(3)當點P在線段AC上滑動時,△PCQ是否可能成為等腰三角形?如果可能,指出所
有能使△PCQ成為等腰三角形的點Q的位置.并求出相應的x值,如果不可能,試說明理由..B
QC
A
P
D
第五篇:幾何證明題專題講解
幾何證明題專題講解
【知識精讀】
1.幾何證明是平面幾何中的一個重要問題,它對培養學生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數量關系;二是有關平面圖形的位置關系。這兩類問題常常可以相互轉化,如證明平行關系可轉化為證明角等或角互補的問題。
2.掌握分析、證明幾何問題的常用方法:
(1)綜合法(由因導果),從已知條件出發,通過有關定義、定理、公理的應用,逐步向前推進,直到問題的解決;
(2)分析法(執果索因)從命題的結論考慮,推敲使其成立需要具備的條件,然后再把所需的條件看成要證的結論繼續推敲,如此逐步往上逆求,直到已知事實為止;
(3)兩頭湊法:將分析與綜合法合并使用,比較起來,分析法利于思考,綜合法易于表達,因此,在實際思考問題時,可合并使用,靈活處理,以利于縮短題設與結論的距離,最后達到證明目的。
3.掌握構造基本圖形的方法:復雜的圖形都是由基本圖形組成的,因此要善于將復雜圖形分解成基本圖形。在更多時候需要構造基本圖形,在構造基本圖形時往往需要添加輔助線,以達到集中條件、轉化問題的目的。
【分類解析】
1、證明線段相等或角相等
兩條線段或兩個角相等是平面幾何證明中最基本也是最重要的一種相等關系。很多其它問題最后都可化歸為此類問題來證。證明兩條線段或兩角相等最常用的方法是利用全等三角形的性質,其它如線段中垂線的性質、角平分線的性質、等腰三角形的判定與性質等也經常用到。
例1.已知:如圖1所示,?ABC中,?C?90?,AC?BC,AD?DB,AE?CF。求證:DE=DF
2、證明直線平行或垂直
在兩條直線的位置關系中,平行與垂直是兩種特殊的位置。證兩直線平行,可用同位角、內錯角或同旁內角的關系來證,也可通過邊對應成比例、三角形中位線定理證明。證兩條直線垂直,可轉化為證一個角等于90°,或利用兩個銳角互余,或等腰三角形“三線合一”來證。
例2.如圖3所示,設BP、CQ是?ABC的內角平分線,AH、AK分別為A到BP、CQ的垂線。
求證:KH∥BC3、證明一線段和的問題
(一)在較長線段上截取一線段等一較短線段,證明其余部分等于另一較短線段。(截長法)
例3.已知:如圖6所示在?ABC中,?B?60?,∠BAC、∠BCA的角平分線AD、CE相交于O。
求證:AC=AE+CD
(二)延長一較短線段,使延長部分等于另一較短線段,則兩較短線段成為一條線段,證明該線段等于較長線段。(補短法)
例4.已知:如圖7所示,正方形ABCD中,F在DC上,E在BC上,?EAF?45?。求證:EF=BE+DF
4、中考題:
如圖8所示,已知?ABC為等邊三角形,延長BC到D,延長BA到E,并且使AE=
BD,連結CE、DE。求證:EC=ED 【實戰模擬】
1.已知:如圖BC于E,且有AC2.已知:如圖求證:BC=3.已知:如圖13所示,過的頂點A,在∠A內任引一射線,過B、C作此射線的垂線BP和CQ。設M為BC的中點。求證:MP=MQ
4.?ABC中,?BAC?